

Exercise sheet 1

Exercises for the exercise session on 13 March 2019

- **Problem 1.1.** (a) Given $r \in \mathbb{N}_{\geq 2}$, let \mathcal{R} be the class of *r*-nary trees and \mathcal{R}_n the class of *r*-nary trees of size *n*.
 - (i) Express \mathcal{R} in terms of \mathcal{R} and basic constructions (e.g. combinatorial sum, etc) and derive the corresponding expression in terms of generating functions.
 - (ii) Derive a closed formula for \mathcal{R}_n (using Lagrange Inversion Theorem).
 - (b) Let \mathcal{P} be the class of rooted plane trees and \mathcal{P}_n the class of rooted plane trees of size n.
 - (i) Express \mathcal{P} in terms of \mathcal{P} and basic constructions (e.g. combinatorial sum, etc) and derive the corresponding expression in terms of generating functions.
 - (ii) Derive a closed formula for \mathcal{P}_n (using Lagrange Inversion Theorem).

Problem 1.2. Let \mathcal{U} be the class of unary-binary trees and \mathcal{U}_n the class of unary-binary trees of size n.

- (a) Express \mathcal{U} in terms of \mathcal{U} and basic constructions (e.g. combinatorial sum, etc) and derive the corresponding expression in terms of generating functions.
- (b) Derive a closed formula for \mathcal{U}_n (using Lagrange Inversion Theorem).

Problem 1.3. Consider the number of ways a string of n identical letters, say x, can be 'bracketed'. The rule is best stated recursively: x itself is a bracketing and if $\sigma_1, \sigma_2, \ldots, \sigma_k$ with $k \geq 2$ are bracketed expressions, then the k-ary product $(\sigma_1 \sigma_2 \cdots \sigma_k)$ is a bracketing. For instance: (((xx)x(xxx))((xx)(xx)x)). Let S denote the class of all bracketings, where size is taken to be the number of instances of x.

- (a) Derive a recursive formula for $s_n := |S_n|$ and derive the corresponding expression in terms of generating functions.
- (b) Derive a closed formula for s_n and its asymptotic formula.

Problem 1.4. Consider a sequence of numbers $x = (x_0 = 0, x_1, \ldots, x_{2n-1}, x_{2n} = 0)$ satisfying $x_i \ge 0$, $|x_i - x_{i-1}| = 1$ for $1 \le i \le 2n$. This represents an excursion that take place in the upper half-plane, also known as *Dyck paths of length 2n*. Let \mathcal{D} be the class of Dyck paths and \mathcal{D}_{2n} the class of Dyck paths of length 2n.

- (a) Express \mathcal{D} in terms of \mathcal{D} and basic constructions (e.g. combinatorial sum, etc) and derive the corresponding expression in terms of generating functions.
- (b) Derive a closed formula for $|\mathcal{D}_{2n}|$ and its asymptotic formula.

Problem 1.5. A meander is a word over $\{-1, +1\}$ such that the sum of the values of any of its prefixes is a non-negative integer. A bridge is a word over $\{-1, +1\}$ whose values of its letters sum to 0. Note that a meander represents a walk that wanders in the first quadrant, and a brige a walk that wanders above and below the horizontal line, but its final altitute is constrained to be 0. Let \mathcal{M} be the class of meanders and \mathcal{B} the class of bridges.

- (a) Express \mathcal{M} and \mathcal{B} in terms of \mathcal{D} and basic constructions and derive the corresponding expression in terms of generating functions.
- (b) Derive a closed formula for $|\mathcal{M}_{2n}|$ and $|\mathcal{B}_{2n}|$ (i.e. the numbers of meanders and bridges of length 2n, respectively).