## Exercise sheet 2

Exercises for the exercise session on 27 March 2019
In all of the following problems, you might end up with a sum expression for the coefficient. If you see a way to simplify this sum expression to a closed formula (such as writing $2^{n}$ instead of the sum formula $\sum_{k=0}^{n}\binom{n}{k}$ ), please do so. (But don't spend too much time looking for a way to simplify sums.)
Problem 2.1. Consider the number of ways a string of $n$ identical letters, say $x$, can be 'bracketed'. The rule is best stated recursively: $x$ itself is a bracketing and if $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ with $k \geq 2$ are bracketed expressions, then the $k$-ary product ( $\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ ) is a bracketing as well. For instance, $(((x x) x(x x x))((x x)(x x) x))$ is a bracketing of 11 letters. Let $\mathcal{S}$ denote the class of all bracketings, where size is taken to be the number of instances of $x$.
(a) Derive a recursive formula for $s_{n}:=\left|\mathcal{S}_{n}\right|$ and derive the corresponding expression in terms of generating functions.
(b) Determine $s_{n}$ via the Lagrange Inversion Theorem.

Problem 2.2. The class of mappings from $\{1, \ldots, n\}$ to itself has the exponential generating function

$$
F(z)=\frac{1}{1-C(z)},
$$

where $C(z)$ is the exponential generating function of the class of Cayley trees and thus satisfies $C(z)=z e^{C(z)}$. Determine the coefficient

$$
\left[z^{n}\right] F(z)
$$

by using the Lagrange formula that if $A(z)=z \phi(A(z))$, then

$$
\left[z^{n}\right] \psi(A(z))=\frac{1}{n}\left[u^{n-1}\right]\left(\psi^{\prime}(u)(\phi(u))^{n}\right) .
$$

Problem 2.3. The class of mappings from $\{1, \ldots, n\}$ to itself without fixed points has the exponential generating function

$$
G(z)=\frac{e^{-C(z)}}{1-C(z)},
$$

where $C(z)$ is the exponential generating function of Cayley trees. Determine the coefficient

$$
\left[z^{n}\right] G(z) .
$$

Problem 2.4. The bivariate exponential generating function of permutations counted according to both the number of elements (marked by $z$ ) and the number of cycles (marked by $u$ ) is

$$
P(z, u)=(1-z)^{-u}=\sum_{n=0}^{\infty}\binom{u+n-1}{n} z^{n} .
$$

Denote by $X_{n}$ the number of cycles in a random permutation, which is chosen uniformly at random from all permutations of size $n$. Determine the second factorial moment

$$
\mathbb{E}\left(X_{n}\left(X_{n}-1\right)\right) .
$$

Problem 2.5. Let $C_{n}$ be a Cayley tree, chosen uniformly at random from all Cayley trees on $n$ vertices. Determine the expected degree of the root of $C_{n}$.

