Exercise sheet 3

Exercises for the exercise session on 8 April 2019

Problem 3.1. Let $R>0$ and let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function such that

- $f(0)=0$,
- $f^{\prime}(0) \neq 0$,
- $f(z) \neq 0$ for all z with $0<|z|<R$.

Using only the rule of l'Hospital, prove that the function

$$
g(z)=\frac{1}{f(z)}-\frac{1}{f^{\prime}(0) z}
$$

is holomorphic on the open disc of radius R around the origin.

Problem 3.2. Let $B(z)=\sum_{n} B_{n} z^{n}$ denote the ordinary generating function for the class of binary strings with no consecutive 0's (note: the empty string is included in this class). Derive
(a) a closed expression for $B(z)$,
(b) an asymptotic expression for B_{n}.

Problem 3.3. An alignment is a sequence of cycles. Let $A(z)=\sum_{n} A_{n} \frac{z^{n}}{n!}$ denote the exponential generating function for the class of alignments. Derive
(a) a closed expression for $A(z)$,
(b) an asymptotic expression for A_{n}.

Problem 3.4. Let G_{n} denote the number of vertex-labelled 2-regular (simple) graphs on vertex set $[n]$, all whose components have even size. Derive
(a) a closed expression for $G(z)=\sum_{n} G_{n} \frac{z^{n}}{n!}$,
(b) an asymptotic expression for P_{n}.

Problem 3.5. Let $P(z)=\sum_{n} P_{n} \frac{z^{n}}{n!}$ denote the exponential generating function for the class of permutations consisting of cycles whose lengths are multiples of three. Derive
(a) a closed expression for $P(z)$,
(b) an asymptotic expression for P_{n}.

