Exercise sheet 4

Exercises for the exercise session on 13 May 2019

Problem 4.1. Let $R(z), U(z)$ denote the (ordinary) generating functions of r-nary trees (for $r \geq 2$) and unary-binary trees, respectively. (See also Problems 1.1(a) and 1.2.) Use the singular inversion theorem to determine asymptotic formulae for $\left[z^{n}\right] R(z)$ and $\left[z^{n}\right] U(z)$.

Problem 4.2. For $r \geq 2$, let \mathcal{C}_{r} be the class of Cayley trees in which every vertex has at most r children. Denote by $C_{r}(z)$ the exponential generating function of \mathcal{C}_{r}.
(a) Show that the singular inversion theorem can be applied to $C_{r}(z)$ for every r and determine an asymptotic formula for $\left[z^{n}\right] C_{r}(z)$ in the special case $r=2$.
(b) Prove that the dominant singularity ρ_{r} of $C_{r}(z)$ converges to $\frac{1}{e}$ for $r \rightarrow \infty$.

Problem 4.3. The ordinary generating function $T(z)$ of the class of triangulations of convex polygons satisfies

$$
\begin{equation*}
T(z)=1+z T(z)^{2} . \tag{1}
\end{equation*}
$$

Show that the implicit function scheme cannot be applied to the function $G(z, w)=1+z w^{2}$ arising from (1). Define an auxilary function $\tilde{T}(z)$ to which the implicit function scheme applies and use this to derive asymptotic formulae for $\left[z^{n}\right] \tilde{T}(z)$ and for $\left[z^{n}\right] T(z)$.

Problem 4.4. A rooted dissection of a convex polygon with a distinguished edge (the root) is a set of non-crossing diagonals of the polygon. Let \mathcal{D}_{n} be the class of rooted dissections of regular ($n+2$)-gons. The ordinary generating function $D(z)$ of $\mathcal{D}=\bigcup_{n} \mathcal{D}_{n}$ satisfies

$$
D(z)=\frac{z(1+D(z))^{2}}{1-z(1+D(z))}
$$

Use the implicit function scheme to derive an asymptotic formula for $\left[z^{n}\right] D(z)$.

Problem 4.5. Let T be a tree with at least three vertices and let v be a vertex of T. Delete v from T and denote the components of the resulting forest by C_{1}, \ldots, C_{k}. For each $i=1, \ldots, k$, let w_{i} be the neighbour of v in C_{i} and denote by u_{i} a vertex in C_{i} with $d\left(u_{i}, v\right)$ (measured in T) maximal. Without loss of generality, suppose that $d\left(u_{1}, v\right) \geq d\left(u_{2}, v\right) \geq \cdots \geq d\left(u_{k}, v\right)$. Prove that
(a) if $k=1$ or $d\left(u_{1}, v\right) \geq d\left(u_{2}, v\right)+2$, then $v \notin c(T)$;
(b) if $k \geq 2$ and $d\left(u_{1}, v\right)=d\left(u_{2}, v\right)$, then $c(T)=\{v\}$;
(c) if $k \geq 2$ and $d\left(u_{1}, v\right)=d\left(u_{2}, v\right)+1$, then $c(T)=\left\{v, w_{1}\right\}$.

