

## Exercise sheet 6

Exercises for the exercise session on 5 June 2019

**Problem 6.1.** Suppose that G(z), H(z) are both Hayman admissible with the same radius of convergence  $\rho$ . Prove that the function F(z) := G(z)H(z) satisfies the capture condition of Hayman admissibility and that there exist  $\rho_0 \in (0, \rho)$  and functions

$$\theta_0^-, \theta_0^+ \colon (\rho_0, \rho) \to (0, \pi)$$

such that F(z) satisfies the locality condition for  $|\theta| \leq \theta_0^-$  and the decay condition for  $|\theta| > \theta_0^+$ . (Meta question: Where does the difficulty lie in finding a single function  $\theta_0$  that works for both conditions?)

**Problem 6.2.** Prove that  $F(z) = \frac{1}{1-z}$  is not Hayman admissible. Furthermore, show that  $G(z) = e^{\frac{z}{1-z}}$  the capture condition and determine what functions  $\theta_0$  would satisfy the necessary condition  $b(s)^{-1/2} \ll \theta_0 \ll c(s)^{-1/3}$  for the locality condition and the decay condition.

Under the assumption that G(z) is indeed Hayman admissible, determine an asymptotic expression for the coefficients  $[z^n]G(z)$ .

**Problem 6.3.** For  $k \ge 2$ , consider the class  $\mathcal{P}_k$  of permutations consisting only of cycles of length at most k, and let  $P_k(z)$  denote its exponential generating function. Determine an asymptotic formula for  $[z^n]P_k(z)$  using saddle-point asymptotics.

**Problem 6.4.** Denote by P(z) the ordinary generating function of plane rooted trees, and let  $F(z) := e^{P(z)}$ . Use saddle-point estimates of large powers to determine asymptotic formulae for  $[z^n]P(z)$  and  $[z^n]F(z)$ .

**Problem 6.5.** Denote by S(z) the ordinary generating function of bracketings (see also Problem 2.1). Apply the standard Lagrangean framework to derive an asymptotic expression for  $[z^n]S(z)$ .