Probabilistic method in combinatorics and algorithmics

Exercise sheet 3

Exercises for the exercise session on 8 Nov. 2018

Problem 3.1. Let H be a fixed graph with k vertices and $m \geq 1$ edges. We define the maximum density d_{H} of H by

$$
d_{H}:=\max \left\{\left.\frac{\left|E\left(H^{\prime}\right)\right|}{\left|V\left(H^{\prime}\right)\right|} \right\rvert\, H^{\prime} \text { is a non-empty subgraph of } H\right\}
$$

Prove that

$$
\mathbb{P}[H \text { is a subgraph of } G(n, p)] \xrightarrow{n \rightarrow \infty} \begin{cases}0 & \text { if } p=o\left(n^{-\frac{1}{d_{H}}}\right), \\ 1 & \text { if } p=\omega\left(n^{-\frac{1}{d_{H}}}\right) .\end{cases}
$$

(Note that for a given set $S \in\binom{[n]}{k}$, there might be more than one bijection $V(H) \rightarrow$ S that preserves adjacencies. At some point in your proof, you should show that the number of such bijections does not affect your arguments.)

Problem 3.2. Let $H=(V, E)$ be a hypergraph in which every edge has at least k-elements. Suppose that each edge of H intersects at most $d \geq 1$ other edges. Prove that if $e(d+1) 2^{1-k} \leq 1$, then H is 2 -colourable.
(Recall that H is called 2-colourable if there exists a colouring of V by two colours so that no edge in E is monochromatic.)

Problem 3.3. The Ramsey number $R(t)$ is defined as the smallest integer n such that any graph G on n vertices contains either a clique of order t or an independent set of order t.
(a) Prove that if $e\left(\binom{t}{2}\binom{n-2}{t-2}+1\right) 2^{1-\binom{t}{2}} \leq 1$, then $R(t)>n$.
(b) Prove that when $t \rightarrow \infty$,

$$
R(t) \geq \frac{\sqrt{2}}{e}(1+o(1)) t 2^{t / 2}
$$

