Probabilistic method in combinatorics and algorithmics

WS 2018/19

Exercise sheet 4

Exercises for the exercise session on 19 Nov. 2018

Problem 4.1. Prove the following variant of Chernoff bounds.
Suppose that X_{1}, \ldots, X_{n} are independent random variables, where each X_{i} has only a finite number of possible values $x_{i, 1}, \ldots, x_{i, m_{i}} \in[-1,1]$ and satisfies $\mathbb{E}\left[X_{i}\right]=0$. Let $X=X_{1}+\cdots+X_{n}$. Then for $0 \leq t \leq 2 \operatorname{Var}[X]$,

$$
\mathbb{P}[X \geq t] \leq \exp \left(-\frac{t^{2}}{4 \operatorname{Var}[X]}\right)
$$

(Hint. Start as in the proof of the Chernoff bound 1 from the lecture. Prove that $\mathbb{E}\left[\exp \left(u X_{i}\right)\right]$ is bounded by $1+u^{2} \operatorname{Var}\left[X_{i}\right]$ if $u \leq 1$.)

Problem 4.2. Let $p=p(n) \in(0,1)$ be given.
(a) For $t>0$ and a fixed vertex v of $G(n, p)$, compare the bounds on $\mathbb{P}[|d(v)-\mathbb{E}[d(v)]| \geq t]$ provided by Chebyshev's inequality and by the Chernoff bounds 1 and 2. In each of the three cases, how large does t have to be in order to deduce that

$$
\mathbb{P}[|d(v)-\mathbb{E}[d(v)]| \geq t]=o(1) ?
$$

(b) How large does t have to be if we want to prove that

$$
\begin{equation*}
\mathbb{P}[\exists v \in[n]:|d(v)-\mathbb{E}[d(v)]| \geq t]=o(1) ? \tag{1}
\end{equation*}
$$

(c) Are there functions $p(n)$ for which the minimum requirements for t in (1) from the two Chernoff bounds coincide?

Problem 4.3. Suppose we place n balls in n bins, where each ball chooses its bin uniformly at random and independently from the other balls.
(a) Prove that for each $\varepsilon>0$,

$$
\mathbb{P}\left[\exists \text { a bin with at least }\left(\frac{3}{2}+\varepsilon\right) \ln n \text { balls }\right]=o(1) .
$$

(b) By how much can we improve the lower bound on the number of balls in a bin?
(c) If we have n^{2} balls in total, for what k can we prove that

$$
\mathbb{P}[\exists \text { a bin with at least } k \text { balls }]=o(1) ?
$$

