Probabilistic method in com-

 binatorics and algorithmicsWS 2018/19

Exercise sheet 5

Exercises for the exercise session on 29 Nov. 2018

Problem 5.1. Let X and Y be random variables.
(a) Prove that

$$
\mathbb{E}[f(X) g(Y)]=\mathbb{E}[f(X) \mathbb{E}[g(Y) \mid X]]
$$

if f and g are real-valued functions.
(b) Prove that

$$
\operatorname{Var}[a X+b Y] \leq a \operatorname{Var}[X]+b \operatorname{Var}[Y]
$$

if X and Y are real-valued and independent and $a, b \in[0,1]$.

Problem 5.2. Given a constant $\alpha \in \mathbb{R}$, let the function $h(x)$ be defined by

$$
h(x):=\frac{e^{\alpha}+e^{-\alpha}}{2}+\frac{e^{\alpha}-e^{-\alpha}}{2} x .
$$

(a) Prove that

$$
e^{\alpha x} \leq h(x)
$$

for all $x \in[-1,1]$.
(b) Prove that

$$
\frac{e^{\alpha}+e^{-\alpha}}{2} \leq e^{\frac{\alpha^{2}}{2}}
$$

Problem 5.3. Let $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$ be a martingale with $X_{0}=\mathbb{E}\left[X_{m}\right]$ and

$$
\left|X_{i}-X_{i-1}\right| \leq c_{i} \quad \text { for all } \quad 1 \leq i \leq m
$$

Prove that for any $t>0$,

$$
\mathbb{P}\left[X_{m}>\mathbb{E}\left[X_{m}\right]+t\right] \leq \exp \left(-\frac{t^{2}}{2 \sum_{1 \leq i \leq m} c_{i}^{2}}\right)
$$

and

$$
\mathbb{P}\left[X_{m}<\mathbb{E}\left[X_{m}\right]-t\right] \leq \exp \left(-\frac{t^{2}}{2 \sum_{1 \leq i \leq m} c_{i}^{2}}\right)
$$

