Probabilistic method in combinatorics and algorithmics

WS 2018/19

Exercise sheet 6

Exercises for the exercise session on 10 Dec. 2018

Problem 6.1. Let $p_{1}, p_{2}, \ldots, p_{8} \in[0,1]$ satisfy $\sum_{i=1}^{8} p_{i}=1$, let the random variables Y_{0}, Y_{1}, and Y_{2} be defined by

$$
\begin{aligned}
\mathbb{P}\left[Y_{0}=-1, Y_{1}=-1, Y_{2}=-1\right] & =p_{1}, \\
\mathbb{P}\left[Y_{0}=-1, Y_{1}=-1, Y_{2}=1\right] & =p_{2}, \\
\mathbb{P}\left[Y_{0}=-1, Y_{1}=1, Y_{2}=-1\right] & =p_{3}, \\
\mathbb{P}\left[Y_{0}=1, Y_{1}=-1, Y_{2}=-1\right] & =p_{4}, \\
\mathbb{P}\left[Y_{0}=-1, Y_{1}=1, Y_{2}=1\right] & =p_{5}, \\
\mathbb{P}\left[Y_{0}=1, Y_{1}=-1, Y_{2}=1\right] & =p_{6}, \\
\mathbb{P}\left[Y_{0}=1, Y_{1}=1, Y_{2}=-1\right] & =p_{7}, \\
\text { and } \mathbb{P}\left[Y_{0}=1, Y_{1}=1, Y_{2}=1\right] & =p_{8},
\end{aligned}
$$

and let the random variables X_{0}, X_{1}, and X_{2} be defined by $X_{i}=\sum_{j \leq i} Y_{j}$.
Find values for $p_{1}, p_{2}, \ldots, p_{8}$ so that we simultaneously have

$$
\begin{gathered}
\qquad \mathbb{E}\left[X_{1} \mid X_{0}=x\right]=x \text { for all } x, \\
\mathbb{E}\left[X_{2} \mid X_{1}=x\right]=x \text { for all } x, \\
\text { and }\left(X_{0}, X_{1}, X_{2}\right) \text { is not a martingale. }
\end{gathered}
$$

Problem 6.2. Let $p=n^{-\alpha}$ for a fixed $\alpha>\frac{1}{2}$. Show

$$
\mathbb{P}[G(n, p) \text { is triangle-free }]=\exp \left(-(1+o(1)) \frac{n^{3-3 \alpha}}{6}\right) .
$$

Problem 6.3. Let $p=n^{-\alpha}$ for a fixed $\alpha \leq \frac{1}{2}$. Show

$$
\mathbb{P}[G(n, p) \text { is triangle-free }] \leq \exp \left(-(1+o(1)) \frac{n^{2-\alpha}}{36}\right)
$$

