Probabilistic method in combinatorics and algorithmics WS 2018/19

Exercise sheet 6

Exercises for the exercise session on 10 Dec. 2018

Problem 6.1. Let $p_1, p_2, \ldots, p_8 \in [0, 1]$ satisfy $\sum_{i=1}^8 p_i = 1$, let the random variables Y_0, Y_1 , and Y_2 be defined by

$$\begin{split} \mathbb{P}[Y_0 &= -1, Y_1 = -1, Y_2 = -1] &= p_1, \\ \mathbb{P}[Y_0 &= -1, Y_1 = -1, Y_2 = 1] &= p_2, \\ \mathbb{P}[Y_0 &= -1, Y_1 = 1, Y_2 = -1] &= p_3, \\ \mathbb{P}[Y_0 &= 1, Y_1 = -1, Y_2 = -1] &= p_4, \\ \mathbb{P}[Y_0 &= -1, Y_1 = 1, Y_2 = 1] &= p_5, \\ \mathbb{P}[Y_0 &= 1, Y_1 = -1, Y_2 = 1] &= p_6, \\ \mathbb{P}[Y_0 &= 1, Y_1 = 1, Y_2 = -1] &= p_7, \\ \text{and } \mathbb{P}[Y_0 = 1, Y_1 = 1, Y_2 = 1] &= p_8, \end{split}$$

and let the random variables X_0 , X_1 , and X_2 be defined by $X_i = \sum_{j \le i} Y_j$. Find values for p_1, p_2, \ldots, p_8 so that we simultaneously have

 $\mathbb{E}[X_1|X_0 = x] = x \text{ for all } x,$ $\mathbb{E}[X_2|X_1 = x] = x \text{ for all } x,$ and (X_0, X_1, X_2) is **not** a martingale.

Problem 6.2. Let $p = n^{-\alpha}$ for a fixed $\alpha > \frac{1}{2}$. Show

$$\mathbb{P}[G(n,p) \text{ is triangle-free}] = \exp\left(-(1+o(1))\frac{n^{3-3\alpha}}{6}\right).$$

Problem 6.3. Let $p = n^{-\alpha}$ for a fixed $\alpha \leq \frac{1}{2}$. Show

$$\mathbb{P}[G(n,p) \text{ is triangle-free}] \le \exp\left(-(1+o(1))\frac{n^{2-\alpha}}{36}\right).$$