Exercise sheet 1

Exercises for the exercise session on 11 March 2020
Problem 1.1. (a) Let \mathcal{T} be the class of ternary trees and \mathcal{T}_{n} the class of ternary trees of size n.
(i) Express \mathcal{T} in terms of \mathcal{T} and basic constructions (e.g. combinatorial sum, etc) and derive the corresponding expression in terms of generating functions.
(ii) Derive a closed formula for \mathcal{T}_{n} (using Lagrange Inversion Theorem).
(b) Let \mathcal{U} be the class of unary-binary trees and \mathcal{U}_{n} the class of unary-binary trees of size n.
(i) Express \mathcal{U} in terms of \mathcal{U} and basic constructions (e.g. combinatorial sum, etc) and derive the corresponding expression in terms of generating functions.
(ii) Derive a closed formula for \mathcal{U}_{n} (using Lagrange Inversion Theorem).

Problem 1.2. Consider the number of ways a string of n identical letters, say x, can be 'bracketed'. The rule is best stated recursively: x itself is a bracketing and if $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ with $k \geq 2$ are bracketed expressions, then the k-ary product ($\sigma_{1} \sigma_{2} \cdots \sigma_{k}$) is a bracketing. For instance: $(((x x) x(x x x))((x x)(x x) x))$. Let \mathcal{S} denote the class of all bracketings, where size is taken to be the number of instances of x.
(a) Express \mathcal{S} in terms of \mathcal{S} and basic constructions (e.g. combinatorial sum, etc) and derive the corresponding expression in terms of generating functions.
(b) Derive a recursive formula for $s_{n}:=\left|\mathcal{S}_{n}\right|$ and derive the corresponding expression in terms of generating functions.
(c) Derive a closed formula for s_{n} and its asymptotic formula.

Problem 1.3. Consider a sequence of numbers $x=\left(x_{0}=0, x_{1}, \ldots, x_{2 n-1}, x_{2 n}=0\right)$ satisfying $x_{i} \geq 0, \quad\left|x_{i}-x_{i-1}\right|=1$ for $1 \leq i \leq 2 n$. This represents an excursion that take place in the upper half-plane, also known as Dyck paths of length $2 n$. Let \mathcal{D} be the class of Dyck paths and $\mathcal{D}_{2 n}$ the class of Dyck paths of length $2 n$.
(a) Express \mathcal{D} in terms of \mathcal{D} and basic constructions (e.g. combinatorial sum, etc) and derive the corresponding expression in terms of generating functions.
(b) Derive a closed formula for $\left|\mathcal{D}_{2 n}\right|$ and its asymptotic formula.

Problem 1.4. A meander is a word over $\{-1,+1\}$ such that the sum of the values of any of its prefixes is a non-negative integer. A bridge is a word over $\{-1,+1\}$ whose values of its letters sum to 0 . Note that a meander represents a walk that wanders in the first quadrant, and a brige a walk that wanders above and below the horizontal line, but its final altitute is constrained to be 0 . Let \mathcal{M} be the class of meanders and \mathcal{B} the class of bridges.
(a) Express \mathcal{M} and \mathcal{B} in terms of \mathcal{D} and basic constructions and derive the corresponding expression in terms of generating functions.
(b) Derive a closed formula for $\left|\mathcal{M}_{2 n}\right|$ and $\left|\mathcal{B}_{2 n}\right|$ (i.e. the numbers of meanders and bridges of length $2 n$, respectively).

