Exercise sheet 4

Exercises for the exercise session on 25 May 2020

Problem 4.1. Let G_{n} denote the number of vertex-labelled 2-regular (simple) graphs on vertex set $[n]$, all whose components have even size.
(a) Derive a closed expression for the exponential generating function $G(z)=\sum_{n} G_{n} \frac{z^{n}}{n!}$.
(b) Use the transfer theorem for multiple singularities to derive an asymptotic expression for G_{n}. If the largest term in the asymptotic expression is $g(n)$, the error term should have order $O\left(\frac{g(n)}{n}\right)$ (i.e. all terms that are smaller than $g(n)$, but of larger order than $\frac{g(n)}{n}$, should be stated explicitly).

Problem 4.2. For $r \geq 2$, let \mathcal{C}_{r} be the class of Cayley trees in which every vertex has at most r children. Denote by $C_{r}(z)$ the exponential generating function of \mathcal{C}_{r}.
(a) Show that the singular inversion theorem can be applied to $C_{r}(z)$ for every r and determine an asymptotic formula for $\left[z^{n}\right] C_{r}(z)$ in the special case $r=2$.
(b) Prove that the dominant singularity ρ_{r} of $C_{r}(z)$ converges to $\frac{1}{e}$ for $r \rightarrow \infty$.

Problem 4.3. The ordinary generating function $T(z)$ of the class of triangulations of convex polygons satisfies

$$
T(z)=G(z, T(z)):=1+z T(z)^{2} .
$$

Check the conditions of the implicit function scheme for the functions $T(z)$ and $G(z, w)$. Which are satisfied and which are not? Define an auxilary function $\tilde{T}(z)$ to which the implicit function scheme applies and use this to derive asymptotic formulae for $\left[z^{n}\right] \tilde{T}(z)$ and for $\left[z^{n}\right] T(z)$.

Problem 4.4. A rooted dissection of a convex polygon with a distinguished edge (the root) is a set of non-crossing diagonals of the polygon. Let \mathcal{D}_{n} be the class of rooted dissections of regular ($n+2$)-gons. The ordinary generating function $D(z)$ of $\mathcal{D}=\bigcup_{n} \mathcal{D}_{n}$ satisfies

$$
D(z)=(1+D(z))\left(\frac{1}{1-z(1+D(z))}-1\right) .
$$

Use the implicit function scheme to derive an asymptotic formula for $\left[z^{n}\right] D(z)$.

