

Exercise sheet 4

Exercises for the exercise session on 25 May 2020

Problem 4.1. Let G_n denote the number of vertex-labelled 2-regular (simple) graphs on vertex set [n], all whose components have even size.

- (a) Derive a closed expression for the exponential generating function $G(z) = \sum_{n} G_n \frac{z^n}{n!}$.
- (b) Use the transfer theorem for multiple singularities to derive an asymptotic expression for G_n . If the largest term in the asymptotic expression is g(n), the error term should have order $O(\frac{g(n)}{n})$ (i.e. all terms that are smaller than g(n), but of larger order than $\frac{g(n)}{n}$, should be stated explicitly).

Problem 4.2. For $r \ge 2$, let C_r be the class of Cayley trees in which every vertex has at most r children. Denote by $C_r(z)$ the exponential generating function of C_r .

- (a) Show that the singular inversion theorem can be applied to $C_r(z)$ for every r and determine an asymptotic formula for $[z^n]C_r(z)$ in the special case r = 2.
- (b) Prove that the dominant singularity ρ_r of $C_r(z)$ converges to $\frac{1}{e}$ for $r \to \infty$.

Problem 4.3. The ordinary generating function T(z) of the class of triangulations of convex polygons satisfies

$$T(z) = G(z, T(z)) := 1 + zT(z)^2.$$

Check the conditions of the implicit function scheme for the functions T(z) and G(z, w). Which are satisfied and which are not? Define an auxiliary function $\tilde{T}(z)$ to which the implicit function scheme applies and use this to derive asymptotic formulae for $[z^n]\tilde{T}(z)$ and for $[z^n]T(z)$.

Problem 4.4. A rooted dissection of a convex polygon with a distinguished edge (the root) is a set of non-crossing diagonals of the polygon. Let \mathcal{D}_n be the class of rooted dissections of regular (n+2)-gons. The ordinary generating function D(z) of $\mathcal{D} = \bigcup_n \mathcal{D}_n$ satisfies

$$D(z) = (1 + D(z)) \left(\frac{1}{1 - z(1 + D(z))} - 1\right).$$

Use the implicit function scheme to derive an asymptotic formula for $[z^n]D(z)$.