

Exercise sheet 6

Exercises for the exercise session on 17 June 2020

Problem 6.1. Let

$$F(z) = \frac{z}{1-z}$$
 und $G(z) = \exp\left(\frac{z}{1-z}\right)$.

Prove that F(z) is not Hayman admissible. Furthermore, prove that G(z) satisfies the capture condition and determine which functions θ_0 satisfy the necessary condition $b(s)^{-1/2} \ll \theta_0 \ll c(s)^{-1/3}$ for the locality condition and the decay condition. Under the assumption that G(z) is indeed Hayman admissible, determine an asymptotic expression for the coefficients $[z^n]G(z)$.

Problem 6.2. Denote by F(z) the exponential generating function of permutations consisting only of cycles of length 2 and 3. Prove that the unique positive solution s_0 of the equation

$$s_0 \frac{F'(s_0)}{F(s_0)} = n$$

satisfies

$$s_0 = n^{1/3} - \frac{1}{3} + \frac{1}{9}n^{-1/3} - \frac{2}{81}n^{-2/3} + o(n^{-2/3}).$$

Determine an asymptotic formula for $[z^n]F(z)$ using saddle-point asymptotics.

Comment: Feel free to use computer assistance for the more tedious calculations (in particular for the asymptotics of s_0^n).

Problem 6.3. Denote by P(z) the ordinary generating function of plane rooted trees, and let $F(z) := e^{P(z)}$. Use saddle-point estimates of large powers to determine asymptotic formulae for $[z^n]P(z)$ and $[z^n]F(z)$.

Hint: First apply Lagrange inversion to express $[z^n]P(z)$ and $[z^n]F(z)$ by an expression to which saddle-point estimates of large powers can be applied.

Problem 6.4. Denote by S(z) the ordinary generating function of bracketings (see also Problem 1.2). Apply the standard Lagrangean framework to derive an asymptotic expression for $[z^n]S(z)$.