Exercise sheet 6

Exercises for the exercise session on 17 June 2020

Problem 6.1. Let

$$
F(z)=\frac{z}{1-z} \quad \text { und } \quad G(z)=\exp \left(\frac{z}{1-z}\right) .
$$

Prove that $F(z)$ is not Hayman admissible. Furthermore, prove that $G(z)$ satisfies the capture condition and determine which functions θ_{0} satisfy the necessary condition $b(s)^{-1 / 2} \ll \theta_{0} \ll c(s)^{-1 / 3}$ for the locality condition and the decay condition.
Under the assumption that $G(z)$ is indeed Hayman admissible, determine an asymptotic expression for the coefficients $\left[z^{n}\right] G(z)$.

Problem 6.2. Denote by $F(z)$ the exponential generating function of permutations consisting only of cycles of length 2 and 3 . Prove that the unique positive solution s_{0} of the equation

$$
s_{0} \frac{F^{\prime}\left(s_{0}\right)}{F\left(s_{0}\right)}=n
$$

satisfies

$$
s_{0}=n^{1 / 3}-\frac{1}{3}+\frac{1}{9} n^{-1 / 3}-\frac{2}{81} n^{-2 / 3}+o\left(n^{-2 / 3}\right) .
$$

Determine an asymptotic formula for $\left[z^{n}\right] F(z)$ using saddle-point asymptotics.
Comment: Feel free to use computer assistance for the more tedious calculations (in particular for the asymptotics of s_{0}^{n}).

Problem 6.3. Denote by $P(z)$ the ordinary generating function of plane rooted trees, and let $F(z):=e^{P(z)}$. Use saddle-point estimates of large powers to determine asymptotic formulae for $\left[z^{n}\right] P(z)$ and $\left[z^{n}\right] F(z)$.

Hint: First apply Lagrange inversion to express $\left[z^{n}\right] P(z)$ and $\left[z^{n}\right] F(z)$ by an expression to which saddle-point estimates of large powers can be applied.

Problem 6.4. Denote by $S(z)$ the ordinary generating function of bracketings (see also Problem 1.2). Apply the standard Lagrangean framework to derive an asymptotic expression for $\left[z^{n}\right] S(z)$.

