

Exercise sheet 2

Exercises for the exercise session on 24/10/2019

All vector spaces on this sheet are finite-dimensional.

Problem 2.1. Let bases $E_1 = \{e_{11}, \ldots, e_{1m}\}$ of \mathbb{C}^m and $E_2 = \{e_{21}, \ldots, e_{2n}\}$ of \mathbb{C}^n be given. Then we know from the lecture that

$$E := \left\{ e_{\gamma}^{\otimes} = e_{1\gamma(1)} \otimes e_{2\gamma(2)} \mid \gamma = (\gamma(1), \gamma(2)) \in \Gamma = \{1, \dots, m\} \times \{1, \dots, n\} \right\}$$

is a basis of $\mathbb{C}^m \otimes \mathbb{C}^n$. For $u = \sum_{\gamma \in \Gamma} a_\gamma e_\gamma^{\otimes}$ and $v = \sum_{\gamma \in \Gamma} b_\gamma e_\gamma^{\otimes}$, set

$$(u,v) := \sum_{\gamma \in \Gamma} a_{\gamma} \overline{b_{\gamma}}.$$

- (a) Show that (u, v) is an inner product on $\mathbb{C}^m \otimes \mathbb{C}^n$ and that E is an orthonormal basis with respect to this inner product.
- (b) Let E_1 , E_2 be the standard bases of \mathbb{C}^m and \mathbb{C}^n . Prove that for matrices $A, B \in \mathbb{C}^m \otimes \mathbb{C}^n = \mathbb{C}_{m \times n}$, the inner product (A, B) equals the trace (i.e. the sum of the diagonal entries) of the matrix B^*A (with $B^* = \overline{B}^T$ as usual).

Problem 2.2. Let $V_1, \ldots, V_m, W_1, \ldots, W_m$ be vector spaces and let linear maps $S_i, T_i: V_i \to W_i, i = 1, \ldots, m$, be given. Without using Problem 2.3, prove the following statements.

- (a) $\otimes_{i=1}^{m} T_i$ is zero if and only if $T_i = 0$ for some i, and it is bijective if and only if each T_i is bijective; in that case, $(\otimes_{i=1}^{m} T_i)^{-1} = \bigotimes_{i=1}^{m} T_i^{-1}$.
- (b) $\bigotimes_{i=1}^{m} T_i = \bigotimes_{i=1}^{m} S_i \neq 0$ if and only if $T_i = c_i S_i \neq 0$ for $i = 1, \ldots, m$ and $\prod_{i=1}^{m} c_i = 1$.

Problem 2.3. For vector spaces $V_1, \ldots, V_m, W_1, \ldots, W_m$, prove that $\operatorname{Hom}(\bigotimes_{i=1}^m V_i, \bigotimes_{i=1}^m W_i)$ is the tensor product of $\operatorname{Hom}(V_1, W_1), \ldots, \operatorname{Hom}(V_m, W_m)$ along the following lines. First verify that the dimensions fit, i.e. $\operatorname{dim}(\operatorname{Hom}(\bigotimes_{i=1}^m V_i, \bigotimes_{i=1}^m W_i)) = \prod_{i=1}^m \operatorname{dim}(\operatorname{Hom}(V_i, W_i))$. Then show that the map

$$\varphi \colon \operatorname{Hom}(V_1, W_1) \times \cdots \times \operatorname{Hom}(V_m, W_m) \to \operatorname{Hom}(\otimes_{i=1}^m V_i, \otimes_{i=1}^m W_i)$$

defined by $\varphi(T_1, \ldots, T_m) := \bigotimes_{i=1}^m T_i$ is multilinear and satisfies $\langle \operatorname{im} \varphi \rangle = \operatorname{Hom}(\bigotimes_{i=1}^m V_i, \bigotimes_{i=1}^m W_i)$. Hint. If bases of vector spaces X, Y are given, what is the canonical basis of

Hint. If bases of vector spaces X, Y are given, what is the canonical basis of Hom(X, Y)?

Problem 2.4. Let V be a vector space. For $v \in V$ and $f \in V^*$, define maps $\varphi(v, f), \psi(v, f) \colon V \to V$ by

$$(\varphi(v,f))(w) := f(v)w$$
 and $(\psi(v,f))(w) := f(w)v$.

Check that $\varphi(v, f)$ and $\psi(v, f)$ are linear. Furthermore, prove that both maps $\varphi, \psi \colon V \times V^* \to \operatorname{Hom}(V, V)$ are multilinear. Are they even tensor maps?

Problem 2.5. Given a vector space V, let $U := \{v \otimes w - w \otimes v \mid v, w \in V\} \subset V \otimes V$ and define

$$\operatorname{Sym}^2(V) := (V \otimes V)/U.$$

Denote by π the quotient map $V \otimes V \to \text{Sym}^2(V)$. Prove that if $\{e_1, \ldots, e_n\}$ is a basis of V, then $\{\pi(e_i, e_j) \mid 1 \leq i \leq j \leq n\}$ is a basis of $\text{Sym}^2(V)$.