Discrete and algebraic structures
 Winter term 2019/20

Exercise sheet 4

Exercises for the exercise session on $7 / 11 / 2019$

Problem 4.1. Let R be a ring with unit and let M be an R-module. Prove that for any positive integer n, a map $f: R^{n} \rightarrow M$ is an R-morphism if and only if there exist $m_{1}, \ldots, m_{n} \in M$ such that

$$
f\left(\left(r_{1}, \ldots, r_{n}\right)\right)=r_{1} m_{1}+\cdots+r_{n} m_{m}
$$

Problem 4.2. Suppose that in the commutative diagram

of R-morphisms, the upper row is exact, while the lower row is semi-exact. Show that there exists a unique R-morphism $\gamma: C \rightarrow C^{\prime}$ for which the completed diagram

is commutative.

Problem 4.3. If

$$
0 \longrightarrow A \xrightarrow{f} E \xrightarrow{g} B \longrightarrow 0
$$

is a short exact sequence of R-modules, then we say that (f, E, g) is an extension of A by B. We call two extensions $\left(f_{1}, E_{1}, g_{1}\right),\left(f_{2}, E_{2}, g_{2}\right)$ of A by B equivalent if there exists an R-morphism $h: E_{1} \rightarrow E_{2}$ with $h \circ f_{1}=f_{2}$ and $g_{2} \circ h=g_{1}$.
Prove that for any R-modules A, B, there exists an extension of A by B and that if $\left(f_{1}, E_{1}, g_{1}\right),\left(f_{2}, E_{2}, g_{2}\right)$ are equivalent extensions, then any R-morphism $h: E_{1} \rightarrow E_{2}$ witnessing this equivalence is an isomorphism. Deduce from this that there exist non-equivalent extensions of \mathbb{Z}_{2} by \mathbb{Z}_{4}.

Problem 4.4. Let M be an R-module.
(a) Prove that if M is finitely generated, then so is every quotient module of M, and that if there is a finitely generated submodule N of M such that M / N is finitely generated, then M is also finitely generated.
(b) If M is finitely generated, is every submodule of M finitely generated as well?

Problem 4.5. Let R be a commutative ring with unit. We call an R-module M cyclic if there is an element $x \in M$ such that $M=\langle x\rangle$.

Suppose that $M=\langle x\rangle$ is cyclic. Prove that $\operatorname{Ann}_{R}\{x\}=\operatorname{Ann}_{R} M$ (the annihilator Ann_{R} was defined in Problem 3.4) and that $M \cong R / \operatorname{Ann}_{R} M$ (as R-modules). Deduce that two cyclic R-modules are isomorphic if and only if they have the same annihilator.

Problem 4.6. Consider the \mathbb{Z}-module $M=\mathbb{R} / \mathbb{Z}$. Prove that

$$
N:=\left\{m \in M \mid \exists z \in \mathbb{Z} \backslash\{0\}: z m=0_{M}\right\}
$$

is a submodule of M and that $M / N \cong \mathbb{R} / \mathbb{Q}$.

