Discrete and algebraic structures
 Winter term 2019/20

Exercise sheet 5

Exercises for the exercise session on $21 / 11 / 2019$
Problem 5.1. Let $f, g, h: \mathbb{N} \rightarrow \mathbb{R}^{+}$. Prove or disprove the following claims.
(i) $f(n)=O(g(n))$ if and only if $g(n)=\Omega(f(n))$;
(ii) $f(n)=o(g(n))$ if and only if $\frac{1}{f(n)}=\omega\left(\frac{1}{g(n)}\right)$;
(iii) $f(n)=O(g(n)+h(n))$ if and only if $f(n)=O(g(n))$ or $f(n)=O(h(n))$;
(iv) If $f(n)=o(g(n))$ and $g(n)=O(h(n))$, then $f(n)=o(h(n))$.

Problem 5.2. Let $f, g, h: \mathbb{N} \rightarrow \mathbb{R} \backslash\{0\}$ be given such that

$$
f(n)=O(h(n)), \quad g(n)=O(h(n)), \quad \text { and } \quad h(n)=o(1) .
$$

Prove that

$$
f(n)+g(n)=O(h(n)), \quad f(n) \cdot g(n)=o(h(n)), \quad \text { and } \quad \frac{1}{1+f(n)}=1+O(h(n)) .
$$

Problem 5.3. Use the Problem 5.2 to prove that

$$
\binom{2 n}{n}=\frac{4^{n}}{\sqrt{\pi n}}\left(1+O\left(\frac{1}{n}\right)\right)
$$

Problem 5.4. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be such that $f(n)=o(1)$. Show that

$$
\begin{aligned}
1+f(n) & =\exp \left(f(n)-\frac{(f(n))^{2}}{2}+O\left((f(n))^{3}\right)\right) \\
\exp (f(n)) & =1+f(n)+O\left((f(n))^{2}\right)
\end{aligned}
$$

Problem 5.5. Use Problem 5.4 to show that

$$
\left(1+\frac{1}{n}\right)^{n}=e-\frac{e}{2 n}+O\left(\frac{1}{n^{2}}\right) .
$$

Problem 5.6. Let $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ be a formal power series.
(a) Prove that $A(z)$ has a reciprocal if and only if $a_{0} \neq 0$. Also prove that the reciprocal is unique if it exists.
(b) Suppose that all a_{n} are integers and prove that the infinite sum

$$
B(z):=1+A(z)+A(z)^{2}+\cdots
$$

is a well-defined formal power series (i.e. it can be written as $B(z)=$ $\sum_{n \geq 0} b_{n} z^{n}$) if and only if $a_{0}=0$. Furthermore, show that $B(z)$ is the reciprocal of $1-A(z)$.

