Discrete and algebraic structures
 Winter term 2019/20

Exercise sheet 6

Exercises for the exercise session on 28/11/2019
Problem 6.1. Using only the identity

$$
\frac{1}{1-z}=\sum_{n \geq 0} z^{n}
$$

and the basic operations for power series (sum, product, differentiation, integration), determine the complex functions that have the following power series.
(i) $\sum_{n \geq 0} \frac{n}{n+1} z^{n}$
(ii) $\sum_{n \geq 0}\left(\sum_{k=1}^{n} \frac{1}{k}\right) z^{n}$
(iii) $\sum_{n \geq 2} n^{2} z^{n}$

Problem 6.2. Let \mathcal{D} and \mathcal{I} be the class of derangements (permutations without fixed-points) and involutions (self-inverse permutations), respectively.
(a) Use the symbolic method to determine the exponential generating function $D(z)$ of \mathcal{D} and derive a sum formula for $\left[z^{n}\right] D(z)$.
(b) Use the symbolic method to determine the exponential generating function $I(z)$ of \mathcal{I} and derive a sum formula for $\left[z^{n}\right] I(z)$.

Problem 6.3. Suppose that the complex function $A(z)$ satisfies

$$
z=\frac{A(z)}{1-A(z)}
$$

for all z in some open ball around 0 . Determine the coefficients $\left[z^{n}\right] A(z)$ in two different ways: once via Lagrange Inversion and then a second time by deducing the explicit form of $A(z)$ from the above equation.

Problem 6.4. Denote by $T(z)$ the exponential generating function of rooted labelled trees and let $\alpha, \beta \in \mathbb{C} \backslash\{0\}$. Determine $\left[z^{n}\right] \exp (\alpha T(z))$ for all integers $n \geq 0$ and deduce from the result that

$$
(\alpha+\beta)(n+\alpha+\beta)^{n-1}=\alpha \beta \sum_{k=0}^{n}\binom{n}{k}(k+\alpha)^{k-1}(n-k+\beta)^{n-k-1}
$$

for all such α, β, n with $\alpha+\beta \neq 0$.
Problem 6.5. Consider an unlabelled tree with a root vertex r. Every vertex $v \neq r$ has a unique neighbour w that is closer to r than v. In this case, we say that v is a child of w. If $u \neq v$ is also child of w, we call u, v siblings.
For an integer $k \geq 1$, let C be a set of k colours und let \mathcal{T}_{k} be class of unlabelled rooted trees in which every every vertex apart from the root is coloured with a colour in C (i.e. r has no colour). Determine the number of
(a) trees in \mathcal{T}_{k} with $n \geq 1$ vertices in which there are no two siblings with the same colour;
(b) trees in \mathcal{T}_{k} with $n \geq m+1$ vertices in which the root has precisely m children (where m is a fixed integer with $1 \leq m \leq k$) and there are no two siblings with the same colour.

