Discrete and algebraic structures
 Winter term 2019/20

Exercise sheet 7

Exercises for the exercise session on $5 / 12 / 2019$

Problem 7.1. For $n \geq 1$, the triangular grid T_{n} of size n consists of all integer points (x, y) with $x, y \geq 0$ and $x+y \leq n$, together with directed edges of the type $(x, y) \rightarrow(x+1, y),(x, y) \rightarrow(x, y+1)$, and $(x, y+1) \rightarrow(x+1, y)$ whenever $x+y \leq n-1$.

Figure 1: The triangular grid of size 4.
A path in T_{n} is called valid if it follows the directions of the edges. Denote by p_{n} the number of valid paths in T_{n} from $(0,0)$ to $(n, 0)$ and let $P(z)$ be their ordinary generating function.
(a) Use the symbolic method to show that $P(z)$ satisfies the equation

$$
P(z)=\frac{1}{1-2 z-z P(z)}-1
$$

and deduce that

$$
P(z)=\frac{1-3 z-\sqrt{1-6 z+z^{2}}}{2 z}
$$

(b) Use singularity analysis to derive the asymptotic size of $p_{n}=\left[z^{n}\right] P(z)$ as

$$
p_{n}=a n^{b} c^{n}\left(1+O\left(\frac{1}{n}\right)\right)
$$

for some constants a, b, c.
Hint. Formally, $P(z)$ is not defined at $z=0$. Start by showing that $\lim _{z \rightarrow 0} P(z)$ exists. (Then complex analysis tells us that P can be extended to a function that is analytic at $z=0$).

Problem 7.2. Let $c \in \mathbb{C}, \alpha \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$, and an analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$ be given. Determine the asymptotic value of $\left[z^{2 n}\right] f\left(z^{2}\right)\left(1-z^{2}\right)^{-\alpha}$
(i) directly, i.e. by applying singularity analysis to $f\left(z^{2}\right)\left(1-z^{2}\right)^{-\alpha}$;
(ii) by applying singularity analysis to the function $f(z)(1-z)^{-\alpha}$ and using that $\left[z^{2 n}\right] f\left(z^{2}\right)\left(1-z^{2}\right)^{-\alpha}=\left[z^{n}\right] f(z)(1-z)^{-\alpha}$.

Problem 7.3. Prove Hall's theorem that a bipartite graph with bipartition $\{A, B\}$ has a matching covering A if and only if

$$
|N(S)| \geq|S| \quad \text { for every } S \subseteq A
$$

Also give an example that shows that Hall's theorem fails for graphs with infinitely many vertices.

Problem 7.4. Let k, n be positive integers and let X be a set of size $k n$. Prove that for any two partitions

$$
X=\biguplus_{i=1}^{n} U_{i} \quad \text { and } \quad X=\biguplus_{i=1}^{n} V_{i} \quad \text { with }\left|U_{i}\right|=\left|V_{i}\right|=k \text { for all } i
$$

there exists a common set of representatives $Y \subseteq X$ (i.e. $\left|U_{i} \cap Y\right|=\left|V_{i} \cap Y\right|=1$ for all i). Show that this is not true if we start with three partitions.

Problem 7.5. Let d, n be positive integers. Prove that every connected graph G on n vertices with $\delta(G) \geq d$ contains a path of length

$$
k:=\min \{2 d, n-1\}
$$

and, if $d \geq 2$, a cycle of length at least

$$
\ell:=\min \{d+1, n\} .
$$

Show that this is best possible in the sense that for every choice of d, there are infinitely many values of n for which there exists a graph G on n vertices with minimum degree at least d such that G neither contains a path of length $k+1$ nor a cycle of length at least $\ell+1$.
Hint. For the first part, start by considering some longest path P in G. Where are the neighbours of the first and last vertices of P ? If P has shorter length than k, try to build from P a cycle with the same vertex set as P (what kind of configuration would enable us to do this, preferably by only changing few edges?), which can then in turn be extended to a path longer than P.

