Discrete and algebraic structures
 Winter term 2019/20

Exercise sheet 8

Exercises for the exercise session on $12 / 12 / 2019$

Problem 8.1. Let $G=(V, E)$ be a plane graph and suppose that there exists a number $r \geq 3$ such that every face of G has at least r edges on its boundary. Prove that

$$
|E| \leq \frac{r}{r-2}(|V|-2)
$$

and deduce from this that neither K_{5} nor $K_{3,3}$ are planar.

Problem 8.2. A graph G is called outerplanar if it is planar in a way such that all vertices of G lie on the boundary of the outer face. Prove that the following statements are equivalent.
(i) G is outerplanar;
(ii) G contains neither K_{4} nor $K_{2,3}$ as a minor;
(iii) G contains neither K_{4} nor $K_{2,3}$ as a topological minor.

Problem 8.3. Let $G=(V, E)$ be a graph. Prove that the following statements are equivalent.
(i) G is a tree;
(ii) G is connected and $|E|=|V|-1$;
(iii) G is maximally acyclic, i.e. G is acyclic, but adding an edge between any to non-adjacent vertices creates a cycle.

Problem 8.4. For $n \geq, 3$, let T be a tree on the vertex set $\{1, \ldots, n\}$ and let $s=\left(s_{1}, \ldots, s_{n-2}\right)$ be its Prüfer code. Can we characterise the trees for which s_{1}, \ldots, s_{n-2} are pairwise distinct? What about the case $s_{1}=\cdots=s_{n-2}$? Construct a bijection similar to Prüfer codes that can be used to count rooted trees on $\{1, \ldots, n\}$. (It is not necessary to re-prove statements that are already known für Prüfer codes; just point out the differences to your construction.)

Problem 8.5. Let $G=(V, E)$ be a graph.
(a) Suppose that G contains a matching M consisting of m edges. Prove that there exists a set $S \subset V$ such that there are at least

$$
\frac{|E|+m}{2}
$$

edges between S and $V \backslash S$.
(b) Suppose that $|E| \leq c^{2}$ for some fixed $c \in \mathbb{N}$. Prove that it is possible to assign a colour to each vertex of G so that at most $2 c$ different colours are used in total and for each edge, its end vertices have different colours.

Note/Hint. Both parts can be proved by determining the expectation of a suitable random variable. For (a), choosing S randomly among all subsets of V would only suffice if we aimed for $\frac{|E|}{2}$ edges. For (b), first consider a random colouring using only c colours.

