Diskrete Mathematik für Informatikstudien Sommersemester 2020

1. Übungsblatt (10.3.2020)

Beispiel 1.1. Zeigen Sie durch vollständige Induktion: Für jedes $n \in \mathbb{N}$ hat die Summe $\sum_{k=1}^{n} (2k-1) \text{ der ersten } n \text{ ungeraden Zahlen den Wert}$

$$\sum_{k=1}^{n} (2k - 1) = n^2.$$

Beispiel 1.2. Zeigen Sie durch vollständige Induktion, dass für jedes $n \in \mathbb{N}$ die Zahl

$$10^{2n-1} + 3^{4n-2}$$

durch 19 teilbar ist.

Beispiel 1.3. Der Divisionssatz besagt, dass es für jedes Zahlenpaar $m, n \in \mathbb{N}$ eindeutig bestimmte Zahlen $q \in \mathbb{N}_0$ und $r \in \{0, 1, \dots, m-1\}$ gibt, sodass n = qm + r. Verfassen Sie einen Algorithmus, der bei Eingabe von m und n die Zahlen q und r findet und dabei lediglich die folgenden Operationen/Abfragen verwendet.

- Addition,
- Subtraktion,
- Abfrage, ob eine Gleichung oder Ungleichung wahr ist.

Führen Sie Ihren Algorithmus an der Tafel für das Beispiel m=42 und n=314 durch.

Beispiel 1.4. Bestimmen Sie alle Zahlen $m, n \in \mathbb{N}$, für welche gilt

- (a) ggT(m, n) = 7 und kgV(m, n) = 2730 bzw.
- (b) ggT(m, n) = 1 und kgV(m, n) = 36.

Hinweis. Sie können verwenden, dass $ggT(m, n) \cdot kgV(m, n) = m \cdot n$.