Probabilistic method in combinatorics and algorithmics

WS 2019/20

Exercise sheet 2

Exercises for the exercise session on 23 October 2019

Problem 2.1. Prove that for $k, n \in \mathbb{N}$ satisfying

$$
\binom{n}{k}\left(1-\left(\frac{1}{2}\right)^{k}\right)^{n-k}<1
$$

there is a tournament on n vertices with the property that for every set of k players, there is some player who beats them all.

Problem 2.2. Suppose an unbiased coin is tossed n times. For $k \leq n$, let A_{k} denote the event that out of these n tosses, there are k consecutive ones with the same outcome (i.e. k consecutive 'heads' or k consecutive 'tails'). Let $\varepsilon>0$. Prove that
(a) $\mathbb{P}\left(A_{k}\right) \xrightarrow{n \rightarrow \infty} 0$ if $k \geq(1+\varepsilon) \log _{2} n$;
(b) $\mathbb{P}\left(A_{k}\right) \xrightarrow{n \rightarrow \infty} 1$ if $k \leq \log _{2} n-(1+\varepsilon) \log _{2} \log _{2} n$.

Problem 2.3. Call an edge in a graph isolated if both its end vertices lie in no other edge. Denote by X the number of isolated edges in $G(n, p)$.
(a) Determine $\mathbb{E}[X]$ and prove that for every given $\varepsilon>0$,

$$
\mathbb{E}[X] \xrightarrow{n \rightarrow \infty} \begin{cases}0 & \text { if } p \geq n^{\varepsilon-1}, \\ \infty & \text { if } p \leq(1-\varepsilon) \frac{\ln n}{2 n}, \text { but } p=\omega\left(\frac{1}{n^{2}}\right) .\end{cases}
$$

Hint. For $\mathbb{E}[X] \rightarrow \infty$, it might help to split the interval for p into two parts.
(b) Prove that

$$
\mathbb{P}(X \geq 1) \xrightarrow{n \rightarrow \infty} \begin{cases}0 & \text { if } \mathbb{E}[X] \rightarrow 0 \\ 1 & \text { if } \mathbb{E}[X] \rightarrow \infty\end{cases}
$$

Problem 2.4. Let $n \geq k \geq 1$ be integers.
(a) Prove that

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq \frac{n^{k}}{k!}<\left(\frac{e n}{k}\right)^{k}
$$

(b) For any constant $\alpha \in(0,1)$, show

$$
\binom{n}{\alpha n}=2^{H(\alpha) n+O\left(\log _{2} n\right)}
$$

where $H:(0,1) \rightarrow \mathbb{R}$ is defined by

$$
H(x)=-x \log _{2} x-(1-x) \log _{2}(1-x) .
$$

Prove that the same formula is still true if α is not constant, but satisfies

$$
\alpha=\omega\left(\frac{1}{n}\right) \quad \text { and } \quad 1-\alpha=\omega\left(\frac{1}{n}\right) .
$$

Problem 2.5. (a) Let $x \in \mathbb{R}$ be given. Prove that $1+x \leq \exp (x)$. Furthermore, prove that $1+x \geq \exp \left(x-\frac{x^{2}}{2}\right)$ is true if and only if $x \geq 0$.
(b) Let integers $n \geq k \geq 1$ be given. Use (a) to show that the falling factorial $(n)_{k}:=\frac{n!}{(n-k)!}$ satisfies

$$
n^{k} \exp \left(-\frac{k(k-1)}{2(n-k+1)}\right) \leq(n)_{k} \leq n^{k} \exp \left(-\frac{k(k-1)}{2 n}\right) .
$$

