Probabilistic method in combinatorics and algorithmics

WS 2019/20

Exercise sheet 4

Exercises for the exercise session on 13 November 2019

Problem 4.1. We say that a hypergraph $H=(V, E)$ is 2-colourable if there exists a colouring of V by two colours so that no edge in E is monochromatic.
Let $k \geq 2$ be given.
(a) Let H be a hypergraph in which every edge contains at least k vertices. Suppose that each edge of H intersects at most $d \geq 1$ other edges. Prove that H is 2colourable if $e(d+1) 2^{1-k} \leq 1$.
(b) Suppose that H is a hypergraph in which each edge has at least k vertices. For each edge f and each $j \geq k$, denote by $d_{f, j}$ the number of edges of size j that intersect f. Prove that if for each edge f of H

$$
8 \sum_{j \geq k} \frac{d_{f, j}}{2^{j}} \leq 1
$$

then H is 2-colourable.
Problem 4.2. The Ramsey number $R(t)$ is defined as the smallest integer n such that any graph G on n vertices contains either a clique of order t or an independent set of order t.
(a) Prove that if $e\left(\binom{t}{2}\binom{n-2}{t-2}+1\right) 2^{1-\binom{t}{2}} \leq 1$, then $R(t)>n$.
(b) Prove that when $t \rightarrow \infty$,

$$
R(t) \geq \frac{\sqrt{2}}{e}(1+o(1)) t 2^{t / 2}
$$

Problem 4.3. Let G be a graph and let $d \geq 1$. Suppose that for every vertex v, there exists a list $S(v)$ of precisely $\lceil 2 e d\rceil$ 'admissible' colours such that no colour in $S(v)$ is admissible for more than d neighbours of v. Prove that there is a 'proper' colouring of G (i.e. no two adjacent vertices have the same colour) assigning to each vertex an admissible colour.
(Hint. The fewer vertices and colours play a role in the probability of a 'bad' event A, the simpler the expression for $\mathbb{P}[A]$ will be.)

Problem 4.4. Let D be a directed graph without loops (i.e. $E(D)$ is a subset of $\{(u, v) \mid u, v \in V(D) \wedge u \neq v\})$ in which each vertex has precisely δ^{+}many outgoing edges and at most Δ^{-}many ingoing edges. Suppose that k is a positive integer satisfying

$$
e\left(\delta^{+} \Delta^{-}+1\right)\left(1-\frac{1}{k}\right)^{\delta^{+}}<1
$$

Prove that there exists a colouring $c: V(D) \rightarrow\{0, \ldots, k-1\}$ such that each vertex $v \in V(D)$ has an outgoing edge (v, w) with $c(w) \equiv c(v)+1(\bmod k)$.
Derive from this that if each vertex of D has at least δ^{+}outgoing and at most Δ^{-} ingoing edges, then D contains a directed cycle whose length is a multiple of k.

Problem 4.5. Let $p=p(n) \in(0,1)$ be given.
(a) For $t>0$ and a fixed vertex v of $G(n, p)$, compare the bounds on $\mathbb{P}[|d(v)-\mathbb{E}[d(v)]| \geq t]$ provided by Chebyshev's inequality and by the Chernoff bounds 1 and 2. In each of the three cases, how large does t have to be in order to deduce that

$$
\mathbb{P}[|d(v)-\mathbb{E}[d(v)]| \geq t]=o(1) ?
$$

(b) How large does t have to be if we want to prove that

$$
\mathbb{P}[\exists v \in[n]:|d(v)-\mathbb{E}[d(v)]| \geq t]=o(1) ?
$$

(c) Are there functions $p(n)$ for which the minimum requirements for t in (b) from the two Chernoff bounds coincide?

