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Problem 5.1. Define the set S ⊂ N by letting each number n be in S with proba-
bility 1/2 independently.

(a) For k, l ∈ N, we set

wl(k) =

⌈
ln(kl2k−1)

ln 2

⌉
.

Denote by Al the event that there is a k ≥ 2 such that S contains an arithmetic
progression of the form

k − b, k, k + b, . . . , k + (wl(k)− 2)b.

Prove that P[Al] ≤ 1/l and deduce from this that with probability 1, S does
not contain an arithmetic progression of infinite length.

(b) Prove that

P
[

lim
n→∞

|S ∩ [n]|
n

=
1

2

]
= 1.

To that end, for fixed ε > 0 and n, use the Chernoff bounds to find an upper
bound for

P
[∣∣∣∣ |S ∩ [n]|

n
− 1

2

∣∣∣∣ ≥ ε

]
and apply a union bound to show that

P
[
∃n ≥ n0 with

∣∣∣∣ |S ∩ [n]|
n

− 1

2

∣∣∣∣ ≥ ε

]
n0→∞= o(1).

Where does this strategy fail when we use Chebyshev’s inequality instead of
Chernoff bounds?

(Note. Szemerédi’s Theorem states that each A ⊂ N with

lim sup
n→∞

|A ∩ [n]|
n

> 0

contains infinitely many arithmetic progressions of length k for every k. Thus, Pro-
blem 5.1 shows that with probability 1, S contains arbitrarily long arithmetic pro-
gressions, but no arithmetic progression of infinite length.)

Problem 5.2. Suppose we place n balls in n bins, where each ball chooses its bin
uniformly at random and independently from the other balls.

(a) Prove that for each ε > 0,

P
[
∃ a bin with at least

(
3

2
+ ε

)
lnn balls

]
= o(1).
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(b) By how much can we decrease the value
(
3
2

+ ε
)

lnn in (a) so that we can still
prove (by the same type of arguments as in (a)) that the probability is o(1)?

(c) If we have n2 balls in total, for what k = k(n) can we prove that

P [∃ a bin with at least k balls] = o(1)?

Problem 5.3. Suppose that an urn contains one red ball and one blue ball. A ball
is drawn from the urn uniformly at random. After that, the ball is put back into the
urn and another ball of the same colour is added to the urn. This process is repeated
n times. Denote by Xn the proportion of red balls in the urn after these n steps (i.e.
number of red balls divided by total number of balls). Use Azuma’s inequality to
prove that

P
[∣∣∣∣Xn −

1

2

∣∣∣∣ ≥ ε

]
< 2 exp

(
− 6ε2

2π2 − 15

)
.

Problem 5.4. Let S1, . . . , Sm be finite sets. Independently for each Si, consider an
arbitrary probability distribution Pi. Let P be the probability distribution on

Ω := {(s1, . . . , sm) | ∀1 ≤ i ≤ m : si ∈ Si}

in which the coordinate si is chosen according to Pi, independently from the other
coordinates. Let f : Ω→ R be a function. For every σ = (s1, . . . , sm) ∈ Ω, we choose
τ = (t1, . . . , tm) ∈ Ω according to P and set, for i = 0, . . . ,m,

Xi(σ) := E[f(τ) | ∀1 ≤ j ≤ i : sj = tj].

Then Xi is a random variable on Ω.

(a) Prove that X0, . . . , Xm is a martingale. Deduce from this that in particular,
the edge exposure martingale and the vertex exposure martingale are indeed
martingales.

(b) Prove that if |f(σ1)− f(σ2)| ≤ 1 holds for all σ1, σ2 ∈ Ω that differ in only
one coordinate, then we have

|Xi(σ)−Xi−1(σ)| ≤ 1

for every σ ∈ Ω and all i = 1, . . . ,m.

Problem 5.5. For an integer n ≥ 1, letG be the graph with vertex set V (G) = (Z7)
n

and with {u, v} ∈ E(G) if and only if u and v differ in only one coordinate. Suppose
that U ⊂ V (G) with |U | = 7n−1 is given. For every c > 0, we define Wc to be the
set of vertices of G with distance at least (2 + c)

√
n from U . Show that

|Wc| < 7ne−
c2

2 .

(Hint. Define a martingale X0, . . . , Xn for which X0 is the average distance—taken
over all vertices of G—from U and Xn(v) is the distance of v from U . Apply Azuma’s
inequality twice: first to prove that X0 is ‘small’ and then to deduce the desired upper
bound for Wc.)


