```
Probabilistic method in combinatorics and algorithmics
```


WS 2019/20

Exercise sheet 6

Exercises for the exercise session on 4 December 2019

Problem 6.1. Let $h=h(n)$ be a positive-valued function with $h(n)=\omega(1)$ (i.e. $h \rightarrow \infty$ as $n \rightarrow \infty)$, but $h(n)=o(\ln n)$. Given

$$
m=(\ln n-h) \cdot n
$$

balls and n bins, place each ball into a bin chosen uniformly at random, independently for each ball. Prove that

$$
\mathbb{P}[\exists \text { empty bin }] \xrightarrow{n \rightarrow \infty} 1 .
$$

Problem 6.2. Let $0<p<\frac{1}{2}$ be a constant and let X_{1}, X_{2}, \ldots be i.i.d. random variables with

$$
X_{i}= \begin{cases}1 & \text { with probability } p \\ -1 & \text { with probability } 1-p\end{cases}
$$

Set $Y_{0}:=1$ and

$$
Y_{i}:=\left(\frac{1-p}{p}\right)^{X_{1}+\cdots+X_{i}} \quad \text { for } i \geq 1 .
$$

(a) Verify that Y_{0}, \ldots, Y_{n} is a martingale (for fixed n).
(b) Show that there exists a constant $0<q<1$ (depending on p) such that

$$
\mathbb{P}\left[X_{1}+\cdots+X_{n} \geq 0\right]<q^{n}
$$

for all n and prove that this implies

$$
\lim _{k \rightarrow \infty} \mathbb{P}\left[\exists n \geq k: Y_{n} \geq 1\right]=0
$$

(Hint. The existence of q can either be proved via Chernoff bounds or with the help of an 'exposure' martingale.)

Problem 6.3. Let n be a positive integer and let $p=p(n) \in(0,1)$. Let X be the sum of n i.i.d. random variables Y_{1}, \ldots, Y_{n}, which are 1 with probability p and 0 with probability $1-p$. Define a martingale X_{0}, \ldots, X_{n} that satisfies $X_{0}=\mathbb{E}[X]$ and $X_{n}=X$. Compare the bound that Azuma's inequality gives for

$$
\mathbb{P}[X>\mathbb{E}[X]+t]
$$

with the bound from Chernoff's inequality. Which one is better? Does the answer depend on the choice of $p(n)$ and t ?

Problem 6.4. A famous result about random graphs states that $G(n, p)$ has a perfect matching with probability $1-o(1)$ whenever n is even and $p \geq \frac{(1+\varepsilon) \ln (n)}{n}$. (Note that this is just large enough in order to guarantee that there are no isolated vertices.) Prove the following weaker result.
Denote by $m(G)$ the size of the largest matching in the graph G and write $\mu:=$ $\mathbb{E}[m(G(n, p))]$. Suppose that $p=p(n) \in[0,1]$ is such that $p n \rightarrow \infty$. Prove that for every $t>0$,

$$
\mathbb{P}[m(G(n, p)) \leq \mu-t \sqrt{n-1}]<\exp \left(-\frac{t^{2}}{2}\right)
$$

and show that for every $\varepsilon>0$,

$$
\mu \geq(1-\varepsilon) \frac{p n}{2}
$$

if n is large enough.

Problem 6.5. Let $k_{0}=k_{0}(n) \in \mathbb{N}$ be such that

$$
\binom{n}{k_{0}} 2^{-\binom{k_{0}}{2}}<1<\binom{n}{k_{0}-1} 2^{-\left(k_{0}-1\right)}
$$

and let $k:=k_{0}-4$. Use Janson's inequality to prove that

$$
\mathbb{P}[G(n, 1 / 2) \text { contains every graph on } k \text { vertices as an induced subgraph }] \xrightarrow{n \rightarrow \infty} 1 .
$$

Hint. Any ingredients of the applications of Janson's inequality from the lecture can be used without reproving them. Given a graph H on k vertices and a set $S \subset[n]$ of size k, there might be several ways how $G(n, 1 / 2)$ can induce on S a graph isomorphic to H. The calculations will be easier if you consider just one fixed isomorphism.

