Exercise sheet 4

Exercises for the exercise session on 26 April 2021

All asymptotic expressions on this sheet should be determined up to a multiplicative error of $1+O(1 / n)$. (If you can provide a stronger error term, even better, but not necessary.)

Problem 4.1. Let $B(z)=\sum_{n} B_{n} z^{n}$ and $S(z)=\sum_{n} S_{n} z^{n}$ denote the ordinary generating functions for the classes of binary strings with no consecutive 0's (note: the empty string is included in this class) and the class of bracketings, respectively. Recall from Problem 1.3 that

$$
S(z)=\frac{1+z-\sqrt{z^{2}-6 z+1}}{4} .
$$

Derive a closed expression for $B(z)$ and use singularity analysis to find asymptotic expressions for B_{n} and S_{n}.

Problem 4.2. Consider the ordinary generating function $T(z)=\sum_{n} T_{n} z^{n}$ of triangulations and the exponential generating function $E(z)=\sum_{n} \frac{E_{n}}{n!} z^{n}$ of surjections in which every preimage has even size. We know from the lecture that

$$
T(z)=\frac{1-\sqrt{1-4 z}}{2 z}
$$

and from Problem 3.4 that

$$
E(z)=\frac{1}{2-\cosh (z)} .
$$

Use singularity analysis to derive asymptotic expressions for T_{n} and E_{n}. Compare the result for T_{n} with the asymptotic expression obtained by applying Stirling's formula to the closed expression for T_{n} (see Example 1.3.9 in the lecture notes).

Problem 4.3. Let G_{n} denote the number of vertex-labelled 2-regular (simple) graphs on vertex set $[n]$, all whose components have even size.
(a) Derive a closed expression for the exponential generating function $G(z)=\sum_{n} \frac{G_{n}}{n!} z^{n}$.
(b) Use the transfer theorem for multiple singularities to derive an asymptotic expression for G_{n}.

Problem 4.4. For $r \geq 2$, let \mathcal{C}_{r} be the class of Cayley trees in which every vertex has at most r children. Denote by $C_{r}(z)$ the exponential generating function of \mathcal{C}_{r}.
(a) Show that the singular inversion theorem can be applied to $C_{r}(z)$ for every r and determine an asymptotic formula for $\left[z^{n}\right] C_{r}(z)$ in the special case $r=2$.
(b) Prove that the dominant singularity ρ_{r} of $C_{r}(z)$ converges to $\frac{1}{e}$ for $r \rightarrow \infty$.

