Probabilistic method in combinatorics and algorithmics

WS 2020/21

Exercise sheet 1

Exercises for the exercise session on 13 October 2020
Definition. A k-uniform hypergraph is a pair $H=(V, E)$ with vertex set V and (hyper)edge set E, where every (hyper)edge is a subset of V containing exactly k elements.

Problem 1.1. Let $k \geq 2$. Prove that if a k-uniform hypergraph H has at most 2^{k-1} edges, then one can colour the vertices of H by two colours so that there is no monochromatic edge (that is, an edge whose vertices all have the same colour).

Problem 1.2. Let $k \geq 4$. Prove that if a k-uniform hypergraph H has at most

$$
\frac{4^{k-1}}{3^{k}}
$$

edges, then one can colour the vertices of H by four colours so that every edge is rainbow (that is, all four colours are represented among the vertices of the edge).

Definition. A tournament is an orientation of a complete graph, i.e. for every pair of distinct vertices v, w, exactly one of the directed edges (v, w) and (w, v) is present. A Hamiltonian path in a tournament is a directed path passing through all vertices.

Problem 1.3. Prove that for every $n \geq 3$, there exists a tournament on n vertices that has more than $n!2^{-n+1}$ Hamiltonian paths.

Problem 1.4. Prove that for $k, n \in \mathbb{N}$ satisfying

$$
\binom{n}{k}\left(1-\left(\frac{1}{2}\right)^{k}\right)^{n-k}<1
$$

there is a tournament on n vertices with the property that for every set A of k vertices, there is some vertex v so that all edges between v and A are directed towards their end vertex in A.

Problem 1.5. Let G be a bipartite graph with n vertices and suppose that each vertex v has a list $S(v)$ of colours. Prove that if $|S(v)|>\log _{2} n$ for each v, then we can colour every vertex with a colour from its list so that no two adjacent vertices have the same colour.
Hint. Partition the set $\bigcup_{v} S(v)$ into two random sets.
Problem 1.6. Let $n \in \mathbb{N}$ and let \mathcal{F} be an inclusion-free family of subsets of $[n]:=$ $\{1,2, \ldots, n\}$ (inclusion-free means that no element of \mathcal{F} is a proper subset of another element). Choose a permutation σ of $[n]$ uniformly at random and define the random variable

$$
X:=|\{k \mid\{\sigma(1), \sigma(2), \ldots, \sigma(k)\} \in \mathcal{F}\}| .
$$

Consider $\mathbb{E}[X]$ in order to prove that $|\mathcal{F}| \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}$.

