Probabilistic method in combinatorics and algorithmics

WS 2020/21

Exercise sheet 2

Exercises for the exercise session on 22 October 2020

Problem 2.1.

(a) Let $x \in \mathbb{R}$. Prove that $1+x \leq \exp (x)$ and show that $1+x \geq \exp \left(x-\frac{x^{2}}{2}\right)$ holds if $x \geq 0$.
(b) For any constant $\alpha \in(0,1)$, show

$$
\binom{n}{\alpha n}=2^{H(\alpha) n+O\left(\log _{2} n\right)},
$$

where $H:(0,1) \rightarrow \mathbb{R}$ is defined by

$$
H(x)=-x \log _{2} x-(1-x) \log _{2}(1-x) .
$$

Prove that the same formula is still true if α is not constant, but satisfies

$$
\alpha=\omega\left(\frac{1}{n}\right) \quad \text { and } \quad 1-\alpha=\omega\left(\frac{1}{n}\right) .
$$

Problem 2.2. Let $k=k(n)$ be such that $k \rightarrow \infty$ as $n \rightarrow \infty$, but $k=o\left(n^{2 / 3}\right)$. Use Stirling's formula

$$
n!=(1+o(1)) \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}
$$

and the Taylor expansion for $\ln (1+x)$ to prove that

$$
\binom{n}{k}=(1+o(1)) \frac{1}{\sqrt{2 \pi k}}\left(\frac{n}{k}\right)^{k} \cdot \begin{cases}\exp (k) & \text { if } k=o\left(n^{1 / 2}\right), \\ \exp \left(k-\frac{k^{2}}{2 n}\right) & \text { if } k=\Omega\left(n^{1 / 2}\right) .\end{cases}
$$

What exponential term would be needed if $k=\Omega\left(n^{2 / 3}\right)$, but $k=o\left(n^{3 / 4}\right)$?
Definition. A property \mathcal{P} of graphs is called decreasing if adding edges to a graph that does not have property \mathcal{P} always results in a graph without property \mathcal{P}.

Problem 2.3. Prove that if \mathcal{P} is a decreasing property of graphs, then

$$
f:[0,1] \rightarrow[0,1], \quad f_{\mathcal{P}}(p):=\mathbb{P}[G(n, p) \text { has property } \mathcal{P}]
$$

is a decreasing function.
Hint. Given probabilities $p_{1}<p_{2}$, try to find a third probability p_{0} for which $G\left(n, p_{0}\right) \cup G\left(n, p_{1}\right)$ has the same probability distribution as $G\left(n, p_{2}\right)$.

Problem 2.4. Suppose an unbiased coin is tossed n times. For $k \leq n$, let A_{k} denote the event that out of these n tosses, there are k consecutive ones with the same outcome (i.e. k consecutive 'heads' or k consecutive 'tails'). Let $\varepsilon>0$. Prove that
(a) $\mathbb{P}\left(A_{k}\right) \xrightarrow{n \rightarrow \infty} 0$ if $k \geq(1+\varepsilon) \log _{2} n$;
(b) $\mathbb{P}\left(A_{k}\right) \xrightarrow{n \rightarrow \infty} 1$ if $k \leq \log _{2} n-(1+\varepsilon) \log _{2} \log _{2} n$.

Problem 2.5. Call an edge in a graph isolated if both its end vertices lie in no other edge. Denote by X the number of isolated edges in $G(n, p)$.
(a) Determine $\mathbb{E}[X]$ and prove that for every given $\varepsilon>0$,

$$
\mathbb{E}[X] \xrightarrow{n \rightarrow \infty} \begin{cases}0 & \text { if } p \geq n^{\varepsilon-1}, \\ \infty & \text { if } p \leq(1-\varepsilon) \frac{\ln n}{2 n}, \text { but } p=\omega\left(\frac{1}{n^{2}}\right) .\end{cases}
$$

Hint. For $\mathbb{E}[X] \rightarrow \infty$, it might help to split the interval for p into two parts.
(b) Prove that

$$
\mathbb{P}(X \geq 1) \xrightarrow{n \rightarrow \infty} \begin{cases}0 & \text { if } \mathbb{E}[X] \rightarrow 0 \\ 1 & \text { if } \mathbb{E}[X] \rightarrow \infty\end{cases}
$$

Problem 2.6. Let $r \geq 2$ be given. For any $n \in \mathbb{N}, p \in[0,1]$, we denote by $H_{r}(n, p)$ the random r-uniform hypergraph on n vertices, in which each element of $\binom{[n]}{r}$ forms an edge with probability p independently. Let A be the event that each ($r-1$)-tuple is contained in at least one edge. For fixed $\varepsilon>0$, prove that

$$
\mathbb{P}[A] \xrightarrow{n \rightarrow \infty} \begin{cases}0 & \text { if } p=(1-\varepsilon) \frac{(r-1) \ln n}{n}, \\ 1 & \text { if } p=(1+\varepsilon) \frac{(x-1) \ln n}{n} .\end{cases}
$$

