Probabilistic method in combinatorics and algorithmics

WS 2020/21

Exercise sheet 2

Exercises for the exercise session on 22 October 2020

Problem 2.1.

- (a) Let $x \in \mathbb{R}$. Prove that $1 + x \le \exp(x)$ and show that $1 + x \ge \exp(x \frac{x^2}{2})$ holds if $x \ge 0$.
- (b) For any constant $\alpha \in (0, 1)$, show

$$\binom{n}{\alpha n} = 2^{H(\alpha)n + O(\log_2 n)},$$

where $H: (0,1) \to \mathbb{R}$ is defined by

$$H(x) = -x \log_2 x - (1-x) \log_2(1-x)$$

Prove that the same formula is still true if α is not constant, but satisfies

$$\alpha = \omega\left(\frac{1}{n}\right)$$
 and $1 - \alpha = \omega\left(\frac{1}{n}\right)$.

Problem 2.2. Let k = k(n) be such that $k \to \infty$ as $n \to \infty$, but $k = o(n^{2/3})$. Use Stirling's formula

$$n! = \left(1 + o(1)\right)\sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

and the Taylor expansion for $\ln(1+x)$ to prove that

$$\binom{n}{k} = (1+o(1))\frac{1}{\sqrt{2\pi k}} \left(\frac{n}{k}\right)^k \cdot \begin{cases} \exp(k) & \text{if } k = o(n^{1/2}), \\ \exp\left(k - \frac{k^2}{2n}\right) & \text{if } k = \Omega(n^{1/2}). \end{cases}$$

What exponential term would be needed if $k = \Omega(n^{2/3})$, but $k = o(n^{3/4})$?

Definition. A property \mathcal{P} of graphs is called *decreasing* if adding edges to a graph that does *not* have property \mathcal{P} always results in a graph without property \mathcal{P} .

Problem 2.3. Prove that if \mathcal{P} is a decreasing property of graphs, then

$$f \colon [0,1] \to [0,1], \quad f_{\mathcal{P}}(p) := \mathbb{P}[G(n,p) \text{ has property } \mathcal{P}]$$

is a decreasing function.

Hint. Given probabilities $p_1 < p_2$, try to find a third probability p_0 for which $G(n, p_0) \cup G(n, p_1)$ has the same probability distribution as $G(n, p_2)$.

Problem 2.4. Suppose an unbiased coin is tossed n times. For $k \leq n$, let A_k denote the event that out of these n tosses, there are k consecutive ones with the same outcome (i.e. k consecutive 'heads' or k consecutive 'tails'). Let $\varepsilon > 0$. Prove that

- (a) $\mathbb{P}(A_k) \xrightarrow{n \to \infty} 0$ if $k \ge (1 + \varepsilon) \log_2 n$;
- (b) $\mathbb{P}(A_k) \xrightarrow{n \to \infty} 1$ if $k \le \log_2 n (1 + \varepsilon) \log_2 \log_2 n$.

Problem 2.5. Call an edge in a graph *isolated* if both its end vertices lie in no other edge. Denote by X the number of isolated edges in G(n, p).

(a) Determine $\mathbb{E}[X]$ and prove that for every given $\varepsilon > 0$,

$$\mathbb{E}[X] \xrightarrow{n \to \infty} \begin{cases} 0 & \text{if } p \ge n^{\varepsilon - 1}, \\ \infty & \text{if } p \le (1 - \varepsilon) \frac{\ln n}{2n}, \text{ but } p = \omega\left(\frac{1}{n^2}\right). \end{cases}$$

Hint. For $\mathbb{E}[X] \to \infty$, it might help to split the interval for p into two parts.

(b) Prove that

$$\mathbb{P}(X \ge 1) \xrightarrow{n \to \infty} \begin{cases} 0 & \text{if } \mathbb{E}[X] \to 0, \\ 1 & \text{if } \mathbb{E}[X] \to \infty. \end{cases}$$

Problem 2.6. Let $r \ge 2$ be given. For any $n \in \mathbb{N}$, $p \in [0, 1]$, we denote by $H_r(n, p)$ the random *r*-uniform hypergraph on *n* vertices, in which each element of $\binom{[n]}{r}$ forms an edge with probability *p* independently. Let *A* be the event that each (r-1)-tuple is contained in at least one edge. For fixed $\varepsilon > 0$, prove that

$$\mathbb{P}[A] \xrightarrow{n \to \infty} \begin{cases} 0 & \text{if } p = (1 - \varepsilon) \frac{(r-1)\ln n}{n}, \\ 1 & \text{if } p = (1 + \varepsilon) \frac{(r-1)\ln n}{n}. \end{cases}$$