Exercise sheet 3

Exercises for the exercise session on 3 November 2020

Problem 3.1. Let A, B, C be events in a probability space such that

- A and B are independent;
- B and C are independent;
- $A \cap B$ and C are independent.

Prove that A and $B \cap C$ are independent as well. Deduce that any minimal dependency graph D for events A_{1}, \ldots, A_{n} has the following properties.
(i) Every vertex i of D is either isolated (i.e. there are no edges involving i) or has at least one outgoing edge (i.e. an edge (i, j)).
(ii) Either D is edgeless or contains a directed cycle (this cycle might consist of only two edges (i, j) and $(j, i))$.

Use these properties to show that in the following setup, Lovász Local Lemma cannot be applied (regardless of the choice of the dependency graph D). Let Ω be the set of all sequences s_{1}, \ldots, s_{n} with $s_{i} \in\{1, \ldots, 6\}$ such that $s_{1}+\cdots+s_{n}$ is even. Choose an element from Ω uniformly at random (i.e. we are considering the outcome of throwing a fair die n times, conditioned on the event that the sum of values is even). Denote by A_{i} the event that s_{i} is odd.

Problem 3.2. Let A_{1}, \ldots, A_{n} be events in a probability space and let $D=([n], E)$ be a directed graph. We say that D is a negative dependency graph for A_{1}, \ldots, A_{n} if the following holds.

For every $J \subseteq[n]$ and $i \in[n] \backslash J$, if $(i, j) \notin E$ for all $j \in J$ and $\mathbb{P}\left[\bigwedge_{j \in J} \overline{A_{j}}\right]>0$, then $\mathbb{P}\left[A_{i} \mid \bigwedge_{j \in J} \overline{A_{j}}\right] \leq \mathbb{P}\left(A_{i}\right)$.

Replacing 'dependency graph' by 'negative dependency graph' in the statement of the Lovász Local Lemma results in the so-called Lopsided Lovász Local Lemma.
(a) Sketch how the proof of the Lovász Local Lemma from the lecture generalises to a proof of the Lopsided Lovász Local Lemma.
(b) Consider the following setup. Let Ω be the set of all permutations of $[n]$. We choose a permutation σ uniformly at random and denote, for each $i \in[n]$, by A_{i} the event that $\sigma(i)=i$.
Follow the arguments sketched below to prove that the edgeless graph on $[n]$ is a negative dependency graph.

It suffices to show (why?) that

$$
\mathbb{P}\left[\bigwedge_{j \in J} \overline{A_{j}} \mid A_{i}\right] \leq \mathbb{P}\left[\bigwedge_{j \in J} \overline{A_{j}}\right]
$$

for all $J \subset[n]$ and $i \in[n] \backslash J$ with $\mathbb{P}\left[A_{i}\right]>0$. Show that this is equivalent to

$$
n\left|A_{i} \wedge \bigwedge_{j \in J} \overline{A_{j}}\right| \leq\left|\bigwedge_{j \in J} \overline{A_{j}}\right|
$$

To prove this inequality, for each permutation $\sigma \in A_{i} \wedge \bigwedge_{j \in J} \overline{A_{j}}$, define $\sigma_{1}, \ldots, \sigma_{n} \in \bigwedge_{j \in J} \overline{A_{j}}$ and prove that $\sigma_{k} \neq \tau_{l}$ as soon as $k \neq l$ or $\sigma \neq \tau$.

Problem 3.3. We say that a hypergraph $H=(V, E)$ is 2-colourable if there exists a colouring of V by two colours so that no edge in E is monochromatic.
Let $k \geq 2$ be given.
(a) Let H be a hypergraph in which every edge has at least k vertices. Suppose that each edge of H intersects at most $d \geq 1$ other edges. Prove that H is 2 -colourable if $e(d+1) 2^{1-k} \leq 1$.
(b) Suppose that H is a hypergraph in which each edge has at least k vertices. For each edge f and each $j \geq k$, denote by $d_{f, j}$ the number of edges of size j that intersect f. Prove that if for each edge f of H

$$
8 \sum_{j \geq k} \frac{d_{f, j}}{2^{j}} \leq 1
$$

then H is 2-colourable.

Problem 3.4. Let G be a graph and let $d \geq 1$. Suppose that for every vertex v, there exists a list $S(v)$ of precisely $\lceil 2 e d\rceil$ 'admissible' colours such that no colour in $S(v)$ is admissible for more than d neighbours of v. Prove that there is a 'proper' colouring of G (i.e. no two adjacent vertices have the same colour) assigning to each vertex an admissible colour.
Hint. The fewer vertices and colours play a role in the probability of a 'bad' event A, the simpler the expression for $\mathbb{P}[A]$ will be.

Problem 3.5. Suppose we place n balls in n bins, where each ball chooses its bin uniformly at random and independently from the other balls.
(a) Prove that for each $\varepsilon>0$,

$$
\mathbb{P}\left[\exists \text { a bin with at least }\left(\frac{2}{3}+\varepsilon\right) \ln n \text { balls }\right]=o(1)
$$

(b) By how much can we decrease the value $\left(\frac{2}{3}+\varepsilon\right) \ln n$ in (a) so that we can still prove (by the same type of arguments as in (a)) that the probability is $o(1)$?
(c) If we have n^{2} balls in total, for what $k=k(n)$ can we prove that

$$
\mathbb{P}[\exists \text { a bin with at most } k \text { balls }]=o(1) ?
$$

Problem 3.6. Define the set $S \subset \mathbb{N}$ by letting each number n be in S with probability $1 / 2$ independently.
(a) For $k, l \in \mathbb{N}$, we set

$$
w_{l}(k)=\left\lceil\frac{\ln \left(k l 2^{k-1}\right)}{\ln 2}\right\rceil .
$$

Denote by A_{l} the event that there is a $k \geq 2$ such that S contains an arithmetic progression of the form

$$
k-b, k, k+b, \ldots, k+\left(w_{l}(k)-2\right) b .
$$

Prove that $\mathbb{P}\left[A_{l}\right] \leq 1 / l$ and deduce from this that with probability $1, S$ does not contain an arithmetic progression of infinite length.
(b) Prove that

$$
\mathbb{P}\left[\lim _{n \rightarrow \infty} \frac{|S \cap[n]|}{n}=\frac{1}{2}\right]=1 .
$$

To that end, for fixed $\varepsilon>0$ and n, use the Chernoff bounds to find an upper bound for

$$
\mathbb{P}\left[\left|\frac{|S \cap[n]|}{n}-\frac{1}{2}\right| \geq \varepsilon\right]
$$

and apply a union bound to show that

$$
\mathbb{P}\left[\exists n \geq n_{0} \text { with }\left|\frac{|S \cap[n]|}{n}-\frac{1}{2}\right| \geq \varepsilon\right] \stackrel{n_{0} \rightarrow \infty}{=} o(1)
$$

Where does this strategy fail when we use Chebyshev's inequality instead of Chernoff bounds?
(Note. Szemerédi's Theorem states that each $A \subset \mathbb{N}$ with

$$
\limsup _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}>0
$$

contains infinitely many arithmetic progressions of length k for every k. Thus, Problem 3.6 shows that with probability $1, S$ contains arbitrarily long arithmetic progressions, but no arithmetic progression of infinite length.)

