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Problem 3.1. Let A,B,C be events in a probability space such that

• A and B are independent;

• B and C are independent;

• A ∩B and C are independent.

Prove that A and B ∩C are independent as well. Deduce that any minimal depen-
dency graph D for events A1, . . . , An has the following properties.

(i) Every vertex i of D is either isolated (i.e. there are no edges involving i) or
has at least one outgoing edge (i.e. an edge (i, j)).

(ii) Either D is edgeless or contains a directed cycle (this cycle might consist of
only two edges (i, j) and (j, i)).

Use these properties to show that in the following setup, Lovász Local Lemma cannot
be applied (regardless of the choice of the dependency graph D). Let Ω be the set of
all sequences s1, . . . , sn with si ∈ {1, . . . , 6} such that s1 + · · · + sn is even. Choose
an element from Ω uniformly at random (i.e. we are considering the outcome of
throwing a fair die n times, conditioned on the event that the sum of values is even).
Denote by Ai the event that si is odd.

Problem 3.2. Let A1, . . . , An be events in a probability space and let D = ([n], E)
be a directed graph. We say that D is a negative dependency graph for A1, . . . , An

if the following holds.

For every J ⊆ [n] and i ∈ [n] \ J , if (i, j) /∈ E for all j ∈ J and

P
[∧

j∈J Aj

]
> 0, then P

[
Ai

∣∣∣ ∧j∈J Aj

]
≤ P(Ai).

Replacing ‘dependency graph’ by ‘negative dependency graph’ in the statement of
the Lovász Local Lemma results in the so-called Lopsided Lovász Local Lemma.

(a) Sketch how the proof of the Lovász Local Lemma from the lecture generalises
to a proof of the Lopsided Lovász Local Lemma.

(b) Consider the following setup. Let Ω be the set of all permutations of [n]. We
choose a permutation σ uniformly at random and denote, for each i ∈ [n], by
Ai the event that σ(i) = i.

Follow the arguments sketched below to prove that the edgeless graph on [n]
is a negative dependency graph.
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It suffices to show (why?) that

P

[∧
j∈J

Aj

∣∣∣∣ Ai

]
≤ P

[∧
j∈J

Aj

]

for all J ⊂ [n] and i ∈ [n] \ J with P[Ai] > 0. Show that this is equivalent to

n

∣∣∣∣∣Ai ∧
∧
j∈J

Aj

∣∣∣∣∣ ≤
∣∣∣∣∣∧
j∈J

Aj

∣∣∣∣∣ .
To prove this inequality, for each permutation σ ∈ Ai ∧

∧
j∈J Aj, define

σ1, . . . , σn ∈
∧

j∈J Aj and prove that σk 6= τl as soon as k 6= l or σ 6= τ .

Problem 3.3. We say that a hypergraph H = (V,E) is 2-colourable if there exists
a colouring of V by two colours so that no edge in E is monochromatic.
Let k ≥ 2 be given.

(a) Let H be a hypergraph in which every edge has at least k vertices. Suppose
that each edge of H intersects at most d ≥ 1 other edges. Prove that H is
2-colourable if e(d+ 1)21−k ≤ 1.

(b) Suppose that H is a hypergraph in which each edge has at least k vertices.
For each edge f and each j ≥ k, denote by df,j the number of edges of size j
that intersect f . Prove that if for each edge f of H

8
∑
j≥k

df,j
2j
≤ 1,

then H is 2-colourable.

Problem 3.4. Let G be a graph and let d ≥ 1. Suppose that for every vertex v,
there exists a list S(v) of precisely d2ede ‘admissible’ colours such that no colour in
S(v) is admissible for more than d neighbours of v. Prove that there is a ‘proper’
colouring of G (i.e. no two adjacent vertices have the same colour) assigning to each
vertex an admissible colour.
Hint. The fewer vertices and colours play a role in the probability of a ‘bad’ event
A, the simpler the expression for P[A] will be.

Problem 3.5. Suppose we place n balls in n bins, where each ball chooses its bin
uniformly at random and independently from the other balls.

(a) Prove that for each ε > 0,

P
[
∃ a bin with at least

(
2

3
+ ε

)
lnn balls

]
= o(1).

(b) By how much can we decrease the value
(
2
3

+ ε
)

lnn in (a) so that we can still
prove (by the same type of arguments as in (a)) that the probability is o(1)?

(c) If we have n2 balls in total, for what k = k(n) can we prove that

P [∃ a bin with at most k balls] = o(1)?
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Problem 3.6. Define the set S ⊂ N by letting each number n be in S with proba-
bility 1/2 independently.

(a) For k, l ∈ N, we set

wl(k) =

⌈
ln(kl2k−1)

ln 2

⌉
.

Denote by Al the event that there is a k ≥ 2 such that S contains an arithmetic
progression of the form

k − b, k, k + b, . . . , k + (wl(k)− 2)b.

Prove that P[Al] ≤ 1/l and deduce from this that with probability 1, S does
not contain an arithmetic progression of infinite length.

(b) Prove that

P
[

lim
n→∞

|S ∩ [n]|
n

=
1

2

]
= 1.

To that end, for fixed ε > 0 and n, use the Chernoff bounds to find an upper
bound for

P
[∣∣∣∣ |S ∩ [n]|

n
− 1

2

∣∣∣∣ ≥ ε

]
and apply a union bound to show that

P
[
∃n ≥ n0 with

∣∣∣∣ |S ∩ [n]|
n

− 1

2

∣∣∣∣ ≥ ε

]
n0→∞= o(1).

Where does this strategy fail when we use Chebyshev’s inequality instead of
Chernoff bounds?

(Note. Szemerédi’s Theorem states that each A ⊂ N with

lim sup
n→∞

|A ∩ [n]|
n

> 0

contains infinitely many arithmetic progressions of length k for every k. Thus, Pro-
blem 3.6 shows that with probability 1, S contains arbitrarily long arithmetic pro-
gressions, but no arithmetic progression of infinite length.)


