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Problem 4.1. Let h = h(n) be a positive-valued function with h(n) = ω(1) (i.e.
h→∞ as n→∞), but h(n) = o(lnn). Given

m = (lnn− h) · n

balls and n bins, place each ball into a bin chosen uniformly at random, indepen-
dently for each ball. Prove that

P[∃ empty bin]
n→∞−→ 1.

Problem 4.2. Suppose that an urn contains one red ball and one blue ball. A ball
is drawn from the urn uniformly at random. After that, the ball is put back into the
urn and another ball of the same colour is added to the urn. This process is repeated
n times. Denote by Xn the proportion of red balls in the urn after these n steps (i.e.
number of red balls divided by total number of balls). Use Azuma’s inequality to
prove that

P
[∣∣∣∣Xn −

1

2

∣∣∣∣ ≥ ε

]
< 2 exp

(
− 6ε2

2π2 − 15

)
.

Problem 4.3. Let S1, . . . , Sm be finite sets. Independently for each Si, consider an
arbitrary probability distribution Pi. Let P be the probability distribution on

Ω := {(s1, . . . , sm) | ∀1 ≤ i ≤ m : si ∈ Si}

in which the coordinate si is chosen according to Pi, independently from the other
coordinates. Let f : Ω→ R be a function. For every σ = (s1, . . . , sm) ∈ Ω, we choose
τ = (t1, . . . , tm) ∈ Ω according to P and set, for i = 0, . . . ,m,

Xi(σ) := E[f(τ) | ∀1 ≤ j ≤ i : sj = tj].

Then Xi is a random variable on Ω.

(a) Prove that X0, . . . , Xm is a martingale. Deduce from this that in particular,
the edge exposure martingale and the vertex exposure martingale are indeed
martingales.

(b) Prove that if |f(σ1)− f(σ2)| ≤ 1 holds for all σ1, σ2 ∈ Ω that differ in only
one coordinate, then we have

|Xi(σ)−Xi−1(σ)| ≤ 1

for every σ ∈ Ω and all i = 1, . . . ,m.
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Problem 4.4. For an integer n ≥ 1, letG be the graph with vertex set V (G) = (Z7)
n

and with {u, v} ∈ E(G) if and only if u and v differ in only one coordinate. Suppose
that U ⊂ V (G) with |U | = 7n−1 is given. For every c > 0, we define Wc to be the
set of vertices of G with distance at least (2 + c)

√
n from U . Show that

|Wc| < 7ne−
c2

2 .

(Hint. Define a martingale X0, . . . , Xn for which X0 is the average distance—taken
over all vertices of G—from U and Xn(v) is the distance of v from U . Apply Azuma’s
inequality twice: once to prove that X0 is ‘small’ and once to deduce the desired
upper bound for Wc.)

Problem 4.5. Let 0 < p < 1
2

be a constant and let X1, X2, . . . be i.i.d. random
variables with

Xi =

{
1 with probability p,

−1 with probability 1− p.

Set Y0 := 1 and

Yi :=

(
1− p
p

)X1+···+Xi

for i ≥ 1.

(a) Verify that Y0, . . . , Yn is a martingale (for fixed n).

(b) Show that there exists a constant 0 < q < 1 (depending on p) such that

P [X1 + · · ·+Xn ≥ 0] < qn

for all n and prove that this implies

lim
k→∞

P [∃n ≥ k : Yn ≥ 1] = 0.

(Hint. The existence of q can either be proved via Chernoff bounds or with
the help of an ‘exposure’ martingale.)

Problem 4.6. Let n be a positive integer and let p = p(n) ∈ (0, 1). Let X be the
sum of n i.i.d. random variables Y1, . . . , Yn, which are 1 with probability p and 0
with probability 1− p. Define a martingale X0, . . . , Xn that satisfies X0 = E[X] and
Xn = X. Compare the bound that Azuma’s inequality gives for

P[X > E[X] + t]

with the bounds from Chernoff’s inequality (i.e. Chernoff 1 and Chernoff 2). Which
one is better? Does the answer depend on the choice of p(n) and t?


