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Problem 5.1. A famous result about random graphs states that G(n, p) has a

perfect matching with probability 1 − o(1) whenever n is even and p ≥ (1+ε) ln(n)
n

.
(Note that this is just large enough in order to guarantee that there are no isolated
vertices.) Prove the following weaker result.
Denote by m(G) the size of the largest matching in the graph G and write µ :=
E[m(G(n, p))]. Suppose that p = p(n) ∈ [0, 1] is such that pn → ∞. Prove that for
every t > 0,
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and show that for every ε > 0,

µ ≥ (1− ε)pn
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if n is large enough.

Problem 5.2. Let k0 = k0(n) ∈ N be such that(
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)
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and let k := k0 − 4. Use Janson’s inequality to prove that

P[G(n, 1/2) contains every graph on k vertices as an induced subgraph]
n→∞−→ 1.

Hint. Any ingredients of the applications of Janson’s inequality from the lecture
can be used without reproving them. Given a graph H on k vertices and a set
S ⊂ [n] of size k, there might be several ways how G(n, 1/2) can induce on S a
graph isomorphic to H. The calculations will be easier if you consider just one fixed
isomorphism.

Problem 5.3. Denote by Cn the number of comparisons that Randomised Quick-
Sort requires to sort an arbitrary, but fixed array (a[1], . . . , a[n]) of distinct num-
bers. Furthermore, let k = k(n) be a function with k = ω(1).

(a) Show that
P[Cn ≥ kn ln(n)] = o(1).

(b) Use an ‘exposure’ martingale to show that there exists a constant c > 0 with

P[Cn ≥ E[Cn] + k] ≤ exp
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The following problems are not about the most recent topics of the lecture, but rather
spread over the entire course.

Problem 5.4. Recall that [n] = {1, . . . , n} is the vertex set of G(n, p). By d(i, j) we
denote the distance (that is, the length of the shortest path) between two vertices
i, j in G(n, p), where d(i, j) =∞ if they do not lie in the same component of G(n, p).
The diameter of G(n, p) is defined as

diam(G(n, p)) := max
{i,j}∈([n]

2 )
d(i, j).

(a) Determine a function p0(n) so that for any fixed pair (i, j),

P[d(i, j) ≤ 2]
n→∞−→

{
0 if p = o(p0),

1 if p = ω(p0).

(b) Show that for any function h(n) with h = ω(1) but h = o(ln(n)),
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Problem 5.5. Let D be a directed graph without loops (i.e. E(D) is a subset of
{(u, v) | u, v ∈ V (D)∧u 6= v}) in which each vertex has precisely δ+ many outgoing
edges and at most ∆− many incoming edges. Suppose that k is a positive integer
satisfying

e(δ+∆− + 1)

(
1− 1

k

)δ+
< 1.

Prove that there exists a colouring c : V (D)→ {0, . . . , k − 1} such that each vertex
v ∈ V (D) has an outgoing edge (v, w) with c(w) ≡ c(v) + 1 mod k.
Derive from this that if each vertex of D has at least δ+ outgoing and at most ∆−

incoming edges, then D contains a directed cycle whose length is a multiple of k.

Problem 5.6. Let vectors v1, . . . , vk ∈ Rm with ‖v1‖ = · · · = ‖vk‖ = 1 be given
and define the following random variables.

• Independently for i = 1, 2, . . . , choose εi ∈ {1,−1} uniformly at random.

• Recursively for i = 1, 2, . . . , let di ∈ {1, . . . , k} be the random variable with

P[di = j] :=
2i − 1

k2i−1
−

i−1∑
`=1

2−`·I{d`=j}

for each j ∈ {1, . . . , k}.

Prove that for every function h(n) = ω(1), we have
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