Advanced and algorithmic
 graph theory

Summer term 2022

Exercise sheet 2

Exercises for the exercise session on 25/04/2022
(Bonus problems are not counted towards the total number of problems, but solving a bonus problem will earn you a bonus point.)

Problem 2.1. Let G be a 2-connected graph which is not a cycle and let $e \in E(G)$.
(a) Prove that all ear-decompositions of G have the same number k of ears.
(b) Show that there are ear-decompositions C, P_{1}, \ldots, P_{k} and $\tilde{C}, \tilde{P}_{1}, \ldots, \tilde{P}_{k}$ of G such that e lies on C and on \tilde{P}_{1}.
(c) Prove that e lies on at least $k+1$ distinct cycles in G.

Bonus problem. Is the statement of Problem 2.1(b) best possible? In other words, does there exist, for every choice of integers $k \geq j \geq 2$, a 2-connected graph G and an edge $e \in E(G)$ such that every ear-decomposition of G is of the form C, P_{1}, \ldots, P_{k}, but no such ear-decomposition satisfies $e \in E\left(P_{j}\right)$?

Problem 2.2. Design an algorithm that constructs ear-decompositions of 2connected graphs. What running time can you achieve?
Note. Do not write (pseudo-)code for your algorithm, but rather describe in words which steps should be used to find the cycle and the ears of the ear-decomposition.

Problem 2.3. Prove that every graph G with at least two vertices satisfies

$$
\kappa(G) \leq \lambda(G) \leq \delta(G)
$$

Furthermore, for all integers d, k, l with $1 \leq k \leq l \leq d$, find a graph G with $\kappa(G)=k$, $\lambda(G)=l$, and $\delta(G)=d$.

Problem 2.4. For a graph G, its line graph $L(G)$ is defined as the graph on vertex set $E(G)$, in which distinct $e, e^{\prime} \in E(G)$ are adjacent (as vertices) in $L(G)$ if and only if they are adjacent (as edges) in G.
Use $L(G)$ to prove the edge version of Menger's theorem: For disjoint sets A, B of vertices in a graph G, the largest number of edge-disjoint $A-B$ paths equals the smallest size of an edge set separating A and B.

Problem 2.5. Let G be a bipartite graph with sides A and B.
(a) Let M_{A}, M_{B} be matchings in G. Denote by A^{\prime} the set of vertices in A that M_{A} covers; define B^{\prime} analogously for M_{B} and B. Prove that G has a matching that covers $A^{\prime} \cup B^{\prime}$.
(b) Use (a) to show that G has a matching that covers all vertices of maximum degree $\Delta(G)$. Deduce that every r-regular bipartite graph (with $r \geq 1$) has a perfect matching.

Problem 2.6. For a bipartite graph G, consider the algorithm from the lecture that constructs a largest matching in G by recursively finding augmenting paths via BFSm.
(a) Prove that if M is not largest possible, then BFSm indeed finds an unmatched vertex in B (and thus an augmenting path).
(b) Suppose (for simplicity) that $|A|=|B|$ and determine (the order of) the running time depending on $n:=|G|$ and $m:=\|G\|$. What is the running time if we know that a largest matching consists of μ edges? Simplify the formulas under the additional assumption that $m=\Omega(n)$.

