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Problem 4.1. Prove that for every closed surface, the set of forbidden topological
minors is finite.
Hint. Start with the set of forbidden minors. For each forbidden minor H, find a
finite number of graphs so that every graph with an MH contains a subdivision of
(at least) one of them. Taking a look at how we found a TK5 or a TK3,3 in an MK5

or MK3,3 in the lecture might help.

Problem 4.2. Consider a planarity recognition algorithm along the lines of the
proof of Kuratowski’s theorem from the lecture. Suppose we have already construc-
ted a cycle C that decomposes G into several fragments.

(a) Describe a way for the algorithm to identify all fragments of G with respect
to C, as well as their attachment sets. What running time can you achieve for
this step?

(b) What running time do you need in order to determine OG(C)?

(c) Describe how to check whether OG(C) is bipartite. (Running time?)

(d) Suppose that the cycle C spans G and is given to us by an oracle (i.e. only
constant running time is spent on finding C). What would be the running time
of the full algorithm in that case?

Problem 4.3. Find all mistakes in the following “proof” of the Four Colour Theo-
rem. (In other words, point out which arguments are valid and which are false.)

Suppose, for contradiction, that the Four Colour Theorem is false. Let v be a vertex
of degree d := δ(G) ≤ 5 in a smallest non-4-colourable planar graph G. Fix a drawing
of G and a 4-colouring c of G − v. Denote the neighbours of v by x1, . . . , xd in the
order they lie around v in the drawing. Furthermore, set Gi,j := G[c−1(i) ∪ c−1(j)].
Since G is not 4-colourable, we know that

no 4-colouring of G− v uses less than four colours for N(v). (1)

In particular, d ≥ 4. Without loss of generality, we may assume that c(xi) = i for
i = 1, 2, 3, 4 and, if d = 5, then c(x5) ∈ {1, 2}.
Suppose first that d = 4. If there is no x1–x3 path in G1,3, then we can recolour
x1 with colour 3 by exchanging the colours in the component of G1,3 that contains
x1 and obtain a colouring c′ that contradicts (1). Otherwise, G2,4 contains no x2–
x4 path and thus we can recolour x2 with colour 4, contradicting (1).
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Now suppose that d = 5 and c(x5) = 1. If there is no x3–{x1, x5} path in G1,3, we
can recolour x3 with colour 1. Otherwise, we can recolour x2 with colour 4 as in the
case d = 4. Either way, we construct a colouring of G− v that contradicts (1).

Finally, suppose that d = 5 and c(x5) = 2. If there is no x1–x3 path in G1,3 or no
x1–x4 path in G1,4, then we can recolour x1 with colour 3 or 4, respectively, and
get a contradiction to (1). Otherwise, there is neither an x2–x4 path in G2,4 nor an
x5–x3 path in G2,3. Thus, we can recolour x2 with colour 4 and x5 with colour 3,
again a contradiction to (1).

Problem 4.4. Let G be a graph.

(a) Show that there exists an ordering σ0 of V (G) such that χGr(G, σ0) = χ(G).

(b) Prove that χGr(G, σ) ≤ 1
2

+
√

2 ‖G‖+ 1
4

for every ordering σ of V (G).

(c) Construct, for every positive integer n, a graph Gn on 2n vertices and an
ordering σ1 of V (Gn), for which χ(Gn) = 2, but χGr(Gn, σ1) = n.

Problem 4.5. Prove that the upper bound 1 + maxH⊆G δ(H) for χ(G) is strictly
larger than 1 + 1

2
d(G).

Problem 4.6. Along the lines of the proof of Brooks’ theorem from the lecture,
derive an algorithm that finds, for every connected graph G that is neither complete
nor an odd cycle, a ∆(G)-colouring in time O(m+ n).


