Exercise sheet 1

Exercises for the exercise session on 10 March 2022

Problem 1.1. Consider a sequence $x=\left(x_{0}=0, x_{1}, \ldots, x_{2 n-1}, x_{2 n}=0\right)$ of non-negative integers satisfying $\left|x_{i}-x_{i-1}\right|=1$ for $1 \leq i \leq 2 n$. This represents an excursion that takes place in the upper half-plane, also known as Dyck paths of length $2 n$. Let \mathcal{D} be the class of Dyck paths and let $D(z)$ be its ordinary generating function.
(a) Express \mathcal{D} in terms of \mathcal{D} and basic constructions (e.g. combinatorial sum etc.) and derive the corresponding recursive formula for $D(z)$ (i.e. express $D(z)$ in terms of $D(z)$ and $z)$.
(b) Solve the recursive formula to derive a closed expression for $D(z)$.
(c) Derive a closed formula for $\left[z^{2 n}\right] D(z)$.

Problem 1.2. A bridge is a word over $\{-1,+1\}$ whose values of its letters sum to 0 . Note that a bridge represents a walk that wanders above and below the horizontal line, but its final altitude is constrained to be 0 . Let \mathcal{B} the class of bridges and let $B(z)$ be its ordinary generating function.
(a) Express \mathcal{B} in terms of the class \mathcal{D} of Dyck paths and basic constructions.
(b) Derive a closed expression for $B(z)$ and determine $\left[z^{n}\right] B(z)$.

Problem 1.3. Consider the number of ways a string of $n \geq 1$ identical letters, say x, can be 'bracketed'. The rule is best stated recursively: x itself is a bracketing and if $\sigma_{1}, \ldots, \sigma_{k}$ with $k \geq 2$ are bracketed expressions, then the k-ary product ($\sigma_{1} \cdots \sigma_{k}$) is a bracketing. For instance $(((x x) x(x x x))((x x)(x x) x))$ is a bracketing of 11 letters. Let \mathcal{S} denote the class of all bracketings, where size is taken to be the number of instances of x, and let $S(z)$ denote the ordinary generating function of \mathcal{S}.
(a) Express \mathcal{S} in terms of \mathcal{S} and basic constructions (e.g. combinatorial sum etc.).
(b) Derive the corresponding recursive formula for $S(z)$.
(c) Solve the recursive formula to derive a closed expression for $S(z)$.
(d) Can the "basic" methods to determine coefficients we know so far - the generalised binomial theorem and Lagrange inversion - be applied to determine an explicit formula for $\left[z^{n}\right] S(z)$? If so, what formula do we get? If they are not applicable, why not?

Problem 1.4. For a fixed integer $r \geq 2$, let \mathcal{R} be the class of r-nary trees, that is, (unlabelled) plane rooted trees in which every vertex either has precisely r children or none at all. Denote by $R(z)$ the ordinary generating function of \mathcal{R}.
(a) Argue directly (i.e. without using generating functions) that the number n of vertices in any r-nary tree always satisfies $n \equiv 1 \bmod r$.
(b) Express \mathcal{R} in terms of \mathcal{R} and basic constructions and derive the corresponding recursive formula for $R(z)$.
(c) Use Lagrange inversion to determine a closed expression for $\left[z^{k r+1}\right] R(z)$.
(d) Apply Stirling's formula to derive an asymptotic formula for $\left[z^{k r+1}\right] R(z)$.

Problem 1.5. Let \mathcal{U} be the class of unary-binary trees, that is, (unlabelled) plane rooted trees in which every vertex has 0,1 or 2 children. Denote by $U(z)$ the ordinary generating function of \mathcal{U}.
(a) Express \mathcal{U} in terms of \mathcal{U} and basic constructions and derive the corresponding recursive formula for $U(z)$.
(b) Use Lagrange inversion to determine a sum formula for $\left[z^{n}\right] U(z)$.
(c) In order to deduce a (rough) estimation for the asymptotic behaviour of $\left[z^{n}\right] U(z)$, figure out which summand in the sum formula is the largest.

