Exercise sheet 2

Exercises for the exercise session on 24 March 2022
The following is a generalisation of Lagrange inversion.
Theorem 1. Let $A(z), \phi(u)$ be formal power series that satisfy the conditions of Lagrange inversion such that $A(z)=z \phi(A(z))$. For any formal power series $\psi(u)$,

$$
\left[z^{n}\right] \psi(A(z))=\frac{1}{n}\left[u^{n-1}\right]\left(\psi^{\prime}(u)(\phi(u))^{n}\right)
$$

Problem 2.1. Denote by \mathcal{F}_{n} and \mathcal{H}_{n} the classes of all mappings $[n] \rightarrow[n]$ and of all such mappings without fixed points, respectively. We know from the lecture that the exponential generating functions of $\mathcal{F}:=\bigcup_{n} \mathcal{F}_{n}, \mathcal{H}:=\bigcup_{n} \mathcal{H}_{n}$ satisfy

$$
F(z)=\frac{1}{1-C(z)} \quad \text { and } \quad H(z)=\frac{e^{-C(z)}}{1-C(z)}
$$

respectively, where $C(z)$ is the exponential generating function of Cayley trees.
(a) Determine $f_{n}:=\left|\mathcal{F}_{n}\right|$ and $h_{n}:=\left|\mathcal{H}_{n}\right|$ by directly counting mappings.
(b) Use Theorem 1 to derive a sum formula for the coefficient $\left[z^{n}\right] F(z)$ and to show the relation $\left[z^{n}\right] H(z)=\frac{n-1}{n}\left[z^{n-1}\right] F(z)$.
(c) Verify that (a) and (b) yield the same results.

Problem 2.2. Denote by \mathcal{U} the class of labelled unicyclic graphs, that is, connected graphs with precisely one cycle.
(a) Express \mathcal{U} in terms of the class \mathcal{C} of Cayley trees and basic constructions and derive the corresponding expression in terms of exponential generating functions.
(b) Use Theorem 1 to determine (as sum formula for) the number of unicyclic graphs on n vertices.

Problem 2.3. The bivariate exponential generating function of permutations counted according to both the number of elements (marked by z) and the number of cycles (marked by u) is

$$
P(z, u)=(1-z)^{-u}=\sum_{n=0}^{\infty}\binom{u+n-1}{n} z^{n}
$$

Denote by X_{n} the number of cycles in a random permutation, which is chosen uniformly at random from all permutations of size n. We know from the lecture that

$$
\mathbb{E}\left[X_{n}\right]=H_{n}:=\sum_{k=1}^{n} \frac{1}{k} .
$$

Determine the second factorial moment

$$
\mathbb{E}\left[X_{n}\left(X_{n}-1\right)\right]
$$

and deduce from the result that $\mathbb{V}\left[X_{n}\right] \leq \mathbb{E}\left[X_{n}\right]$.

Problem 2.4. Let C_{n} and P_{n} be a Cayley tree and a plane rooted tree, respectively, chosen uniformly at random from all Cayley trees or plane rooted trees on n vertices, respectively. Determine
(a) the expected degree of the root of C_{n};
(b) the expected degree of the root of P_{n}.

