Exercise sheet 5

Exercises for the exercise session on 18 May 2022
Problem 5.1. Suppose that $G(z), H(z)$ are both Hayman admissible with the same radius of convergence ρ. Prove that the function $F(z):=G(z) H(z)$ satisfies the capture condition of Hayman admissibility and that there exist $\rho_{0} \in(0, \rho)$ and functions

$$
\theta_{0}^{-}, \theta_{0}^{+}:\left(\rho_{0}, \rho\right) \rightarrow(0, \pi)
$$

such that $F(z)$ satisfies the locality condition for $|\theta| \leq \theta_{0}^{-}$and the decay condition for $|\theta|>\theta_{0}^{+}$. (Meta question: Where does the difficulty lie in finding a single function θ_{0} that works for both conditions?)

Problem 5.2. The class \mathcal{P} of permutations σ with $\sigma^{3}=\mathrm{id}$ has exponential generating function

$$
P(z)=\exp \left(z+\frac{z^{3}}{3}\right) .
$$

Prove that $P(z)$ is Hayman admissible.
Remark. You can apply the necessary condition $b(s)^{-1 / 2} \ll \theta_{0} \ll c(s)^{-1 / 3}$ to find a suitable function $\theta_{0}=\theta_{0}(s)$, but afterwards you should check that the locality condition and the decay condition in fact hold for this θ_{0}.

Problem 5.3. Let $P(z)$ be as in Problem 5.2.
(a) Approximate the unique positive solution s_{0} of the saddle-point equation

$$
s_{0} \frac{P^{\prime}\left(s_{0}\right)}{P\left(s_{0}\right)}=n
$$

in the following way. Substitute $s_{0}=\alpha_{1} n^{\beta_{1}}+\alpha_{2} n^{\beta_{2}} \pm n^{\beta_{1}-1-\varepsilon}$ (with $\beta_{1}>\beta_{2}$ and $\varepsilon>0$) in the saddle-point equation and choose the constants so that the left-hand side becomes $n \pm c n^{-\varepsilon}+o\left(n^{-\varepsilon}\right)$ with some constant $c>0$.
Argue that this implies $s_{0}=(1+o(1))\left(\alpha_{1} n^{\beta_{1}}+\alpha_{2} n^{\beta_{2}}\right)$.
(b) Use (a) to derive an asymptotic formula for $\left[z^{n}\right] P(z)$.

Problem 5.4. Denote by $P(z)$ the ordinary generating function of plane rooted trees, and let $F(z):=e^{P(z)}$. Use saddle-point estimates of large powers to determine asymptotic formulae for $\left[z^{n}\right] P(z)$ and $\left[z^{n}\right] F(z)$.
Hint: First apply Lagrange inversion to express $\left[z^{n}\right] P(z)$ and $\left[z^{n}\right] F(z)$ by an expression to which saddle-point estimates of large powers can be applied.

Problem 5.5. Denote by $S(z)$ the ordinary generating function of bracketings (see also Problems 1.3 and 3.3). Apply the standard Lagrangean framework to derive an asymptotic expression for $\left[z^{n}\right] S(z)$.

