

Exercise sheet 5

Exercises for the exercise session on 18 May 2022

Problem 5.1. Suppose that G(z), H(z) are both Hayman admissible with the same radius of convergence ρ . Prove that the function F(z) := G(z)H(z) satisfies the capture condition of Hayman admissibility and that there exist $\rho_0 \in (0, \rho)$ and functions

$$\theta_0^-, \theta_0^+ \colon (\rho_0, \rho) \to (0, \pi)$$

such that F(z) satisfies the locality condition for $|\theta| \leq \theta_0^-$ and the decay condition for $|\theta| > \theta_0^+$. (Meta question: Where does the difficulty lie in finding a single function θ_0 that works for both conditions?)

Problem 5.2. The class \mathcal{P} of permutations σ with $\sigma^3 = \text{id}$ has exponential generating function

$$P(z) = \exp\left(z + \frac{z^3}{3}\right).$$

Prove that P(z) is Hayman admissible.

Remark. You can apply the necessary condition $b(s)^{-1/2} \ll \theta_0 \ll c(s)^{-1/3}$ to find a suitable function $\theta_0 = \theta_0(s)$, but afterwards you should check that the locality condition and the decay condition in fact hold for this θ_0 .

Problem 5.3. Let P(z) be as in Problem 5.2.

(a) Approximate the unique positive solution s_0 of the saddle-point equation

$$s_0 \frac{P'(s_0)}{P(s_0)} = n$$

in the following way. Substitute $s_0 = \alpha_1 n^{\beta_1} + \alpha_2 n^{\beta_2} \pm n^{\beta_1 - 1 - \varepsilon}$ (with $\beta_1 > \beta_2$ and $\varepsilon > 0$) in the saddle-point equation and choose the constants so that the left-hand side becomes $n \pm cn^{-\varepsilon} + o(n^{-\varepsilon})$ with some constant c > 0.

Argue that this implies $s_0 = (1 + o(1))(\alpha_1 n^{\beta_1} + \alpha_2 n^{\beta_2}).$

(b) Use (a) to derive an asymptotic formula for $[z^n]P(z)$.

Problem 5.4. Denote by P(z) the ordinary generating function of plane rooted trees, and let $F(z) := e^{P(z)}$. Use saddle-point estimates of large powers to determine asymptotic formulae for $[z^n]P(z)$ and $[z^n]F(z)$.

Hint: First apply Lagrange inversion to express $[z^n]P(z)$ and $[z^n]F(z)$ by an expression to which saddle-point estimates of large powers can be applied.

Problem 5.5. Denote by S(z) the ordinary generating function of bracketings (see also Problems 1.3 and 3.3). Apply the standard Lagrangean framework to derive an asymptotic expression for $[z^n]S(z)$.