

Winter term 2021/22

Exercise sheet 1

Exercises for the exercise session on 14/10/2021

For all problems on this sheet, let $P, U, V, W, W', U_1, \ldots, U_m, V_1, \ldots, V_m$ be finitedimensional vector space over a field K.

Problem 1.1. Let a multilinear map $\varphi: V_1 \times \cdots \times V_m \to W$ and linear maps $T: W \to W'$ and $T_i: U_i \to V_i$ for each *i* be given.

- (a) Prove that $T \circ \varphi \colon V_1 \times \cdots \times V_m \to W'$ is multilinear.
- (b) We define $\psi: U_1 \times \cdots \times U_m \to W$ by

$$\psi(u_1,\ldots,u_m)=\varphi(T_1(u_1),\ldots,T_m(u_m)).$$

Show that ψ is multilinear.

Problem 1.2. Let $\varphi: V_1 \times \cdots \times V_m \to P$ be a multilinear map and suppose that $\psi: V_1 \times \cdots \times V_m \to W$ is a tensor map.

- (a) Prove that φ is a tensor map if and only there is a linear map $T: P \to W$ with $\psi = T \circ \varphi$.
- (b) Suppose that φ is a tensor map and show that the map T from (a) is *unique* if and only if $\langle im\varphi \rangle = P$ and that it can be chosen to be a bijection if and only if dim $(P) = \dim(W)$ (but not necessarily $\langle im\varphi \rangle = P$).

Problem 1.3. Let $u_1, \ldots, u_k \in U, v_1, \ldots, v_k \in V$, and $w_1, \ldots, w_k \in W$.

- (a) Prove that if $\sum_{i=1}^{k} (u_i \otimes v_i)$ has rank k, then both sets $\{u_1, \ldots, u_k\}$ and $\{v_1, \ldots, v_k\}$ are linearly independent.
- (b) Suppose that $\{u_1, \ldots, u_k\}$ and $\{v_1, \ldots, v_k\}$ are linearly independent and $w_i \neq 0$ for all $i = 1, \ldots, k$. Show that

$$\sum_{i=1}^{k} (u_i \otimes v_i \otimes w_i) \in U \otimes V \otimes W$$

has rank k.

Problem 1.4. Suppose that, for each i = 1, ..., m, there are $v_{i,1}, ..., v_{i,k} \in V_i$ such that

$$\sum_{j=1}^k v_{1,j} \otimes \cdots \otimes v_{m,j} = 0.$$

Prove that if $v_{1,1}, \ldots, v_{1,k}$ are linearly independent, then for each $j = 1, \ldots, k$, at least one of $v_{2,j}, \ldots, v_{m,j}$ is zero.

Problem 1.5. Suppose that the multilinear map $\varphi: V_1 \times \cdots \times V_m \to W$ is surjective. Prove that there exists a subspace U of $V_1 \otimes \cdots \otimes V_m$ such that the quotient space $(V_1 \otimes \cdots \otimes V_m)/U$ is isomorphic to W, and each of its equivalence classes contains a decomposable tensor.