# Discrete and algebraic structures <br> Winter term 2021/22 

Exercise sheet 1
Exercises for the exercise session on 14/10/2021
For all problems on this sheet, let $P, U, V, W, W^{\prime}, U_{1}, \ldots, U_{m}, V_{1}, \ldots, V_{m}$ be finitedimensional vector space over a field $K$.

Problem 1.1. Let a multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow W$ and linear maps $T: W \rightarrow W^{\prime}$ and $T_{i}: U_{i} \rightarrow V_{i}$ for each $i$ be given.
(a) Prove that $T \circ \varphi: V_{1} \times \cdots \times V_{m} \rightarrow W^{\prime}$ is multilinear.
(b) We define $\psi: U_{1} \times \cdots \times U_{m} \rightarrow W$ by

$$
\psi\left(u_{1}, \ldots, u_{m}\right)=\varphi\left(T_{1}\left(u_{1}\right), \ldots, T_{m}\left(u_{m}\right)\right)
$$

Show that $\psi$ is multilinear.
Problem 1.2. Let $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow P$ be a multilinear map and suppose that $\psi: V_{1} \times \cdots \times V_{m} \rightarrow W$ is a tensor map.
(a) Prove that $\varphi$ is a tensor map if and only there is a linear map $T: P \rightarrow W$ with $\psi=T \circ \varphi$.
(b) Suppose that $\varphi$ is a tensor map and show that the map $T$ from (a) is unique if and only if $\langle\operatorname{im} \varphi\rangle=P$ and that it can be chosen to be a bijection if and only if $\operatorname{dim}(P)=\operatorname{dim}(W)$ (but not necessarily $\langle\operatorname{im} \varphi\rangle=P$ ).
Problem 1.3. Let $u_{1}, \ldots, u_{k} \in U, v_{1}, \ldots, v_{k} \in V$, and $w_{1}, \ldots, w_{k} \in W$.
(a) Prove that if $\sum_{i=1}^{k}\left(u_{i} \otimes v_{i}\right)$ has rank $k$, then both sets $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent.
(b) Suppose that $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent and $w_{i} \neq 0$ for all $i=1, \ldots, k$. Show that

$$
\sum_{i=1}^{k}\left(u_{i} \otimes v_{i} \otimes w_{i}\right) \in U \otimes V \otimes W
$$

has rank $k$.
Problem 1.4. Suppose that, for each $i=1, \ldots, m$, there are $v_{i, 1}, \ldots, v_{i, k} \in V_{i}$ such that

$$
\sum_{j=1}^{k} v_{1, j} \otimes \cdots \otimes v_{m, j}=0
$$

Prove that if $v_{1,1}, \ldots, v_{1, k}$ are linearly independent, then for each $j=1, \ldots, k$, at least one of $v_{2, j}, \ldots, v_{m, j}$ is zero.
Problem 1.5. Suppose that the multilinear map $\varphi: V_{1} \times \cdots \times V_{m} \rightarrow W$ is surjective. Prove that there exists a subspace $U$ of $V_{1} \otimes \cdots \otimes V_{m}$ such that the quotient space $\left(V_{1} \otimes \cdots \otimes V_{m}\right) / U$ is isomorphic to $W$, and each of its equivalence classes contains a decomposable tensor.

