Discrete and algebraic structures
 Winter term 2021/22

Exercise sheet 3
Exercises for the exercise session on $04 / 11 / 2021$
Problem 3.1. Let U, V, W be finite-dimensional vector spaces over a field K.
(a) Prove that $\varphi((u, v) \otimes w)=((u \otimes w),(v \otimes w))$ is a well-defined map from the set of decomposable tensors in $(U \times V) \otimes W$ to $(U \otimes W) \times(V \otimes W)$ that can be extended to a bijective linear map

$$
\varphi:(U \times V) \otimes W \rightarrow(U \otimes W) \times(V \otimes W)
$$

(b) Prove that $v_{1}, \ldots, v_{r} \in V$ are linearly independent if and only if $v_{1} \wedge \cdots \wedge v_{r} \neq 0$ (as an element of $\bigwedge^{r} V$).

Problem 3.2. Let A be an abelian group of order m. Then for $k, n \in \mathbb{Z}$ with $k \equiv n \bmod m$, we have $k x=n x$ for all $x \in A$ (why?). Deduce that A is a module over $\mathbb{Z} / m \mathbb{Z}$, where the action $\mathbb{Z} / m \mathbb{Z} \times A \rightarrow A$ is given by $(n+m \mathbb{Z}, x) \mapsto n x$. Conclude that every finite abelian group whose order is a prime p can be regarded as a vector space over a field of p elements.

Problem 3.3. For a ring A with unit, we define the centre of A as

$$
Z(A):=\{x \in A \mid \forall y \in A: x y=y x\} .
$$

Prove that $Z(A)$ is a ring with unit. For a commutative ring R with unit, prove that A is a (unitary) associative R-algebra if and only if there exists a ring morphism $\varphi: R \rightarrow Z(A)$ with $\varphi\left(1_{R}\right)=1_{Z(A)}$.

Problem 3.4. Let M be a left module over a ring R. For non-empty $S \subset M$, we define the annihilator of S in R by

$$
\operatorname{Ann}_{R} S=\left\{r \in R \mid \forall s \in S: r s=0_{M}\right\} .
$$

(a) Prove that $\operatorname{Ann}_{R} S$ is a left ideal of R and that it is a two-sided ideal whenever S is a submodule of M.
(b) Suppose that $r, s \in R$ with $r-s \in \operatorname{Ann}_{R} M$. Prove that $r x=s x$ for each $x \in$ M. Deduce that M is also a module over $R / \operatorname{Ann}_{R} M$ and that the annihilator of M in this ring is $\{0\}$.

Problem 3.5. Let M, N be R-modules and let $f: M \rightarrow N$ be an R-morphism. Prove that if A is a submodule of M and B is a submodule of N, then

$$
f\left(A \cap f^{-1}(B)\right)=f(A) \cap B \quad \text { and } \quad f^{-1}(B+f(A))=f^{-1}(B)+A
$$

