Discrete and algebraic structures
 Winter term 2021/22

Exercise sheet 8

Exercises for the exercise session on $16 / 12 / 2021$
Problem 8.1. Let $G=(V, E)$ be a plane graph.
(a) Suppose that G is connected and that every face of G has at least $g \geq 3$ edges on its boundary. Show that in this case

$$
|E| \leq \frac{g}{g-2}(|V|-2)
$$

Deduce from this that neither K_{5} nor $K_{3,3}$ is planar.
(b) Let c denote the number of components of G. Find and prove an equation for the number of faces of G in terms of $c,|V|$, and $|E|$.
Note. It is not necessary to reprove the Euler formula for connected plane graphs (Theorem 4.2.3 from the lecture).

Problem 8.2. A graph G is called outerplanar if it is planar in a way such that all vertices of G lie on the boundary of the outer face. Prove that the following statements are equivalent.
(i) G is outerplanar;
(ii) G contains neither K_{4} nor $K_{2,3}$ as a minor;
(iii) G contains neither K_{4} nor $K_{2,3}$ as a topological minor.

Problem 8.3. Let $G=(V, E)$ be a graph. Prove that the following statements are equivalent.
(i) G is a tree;
(ii) G is connected and $|E|=|V|-1$;
(iii) G is maximally acyclic, i.e. G is acyclic, but adding an edge between any to non-adjacent vertices creates a cycle.

Problem 8.4. Let $G=(V, E)$ be a graph.
(a) Suppose that G contains a matching M consisting of m edges. Prove that there exists a set $S \subset V$ such that there are at least

$$
\frac{|E|+m}{2}
$$

edges between S and $V \backslash S$.
(b) Suppose that $|E| \leq c^{2}$ for some fixed $c \in \mathbb{N}$. Prove that it is possible to assign a colour to each vertex of G so that at most $2 c$ different colours are used in total and for each edge, its end vertices have different colours.

Note/Hint. Both parts can be proved by determining the expectation of a suitable random variable. For (a), choosing S uniformly at random among all subsets of V would suffice if we aimed for $\frac{|E|}{2}$ edges. In order to increase this value, try to ensure that all edges of M are between S and $V \backslash S$. For (b), first consider a random colouring using only c colours.

Problem 8.5. Let H be a graph with k vertices and $m \geq 1$ edges. Suppose that H is balanced, that is, for every subgraph $H^{\prime} \neq \emptyset$ of H, we have

$$
\frac{\left|E\left(H^{\prime}\right)\right|}{\left|V\left(H^{\prime}\right)\right|} \leq \frac{m}{k} .
$$

Use the first and second moment method to prove that

$$
\mathbb{P}[H \text { is a subgraph of } G(n, p)] \xrightarrow{n \rightarrow \infty} \begin{cases}0 & \text { if } p=o\left(n^{-\frac{k}{m}}\right), \\ 1 & \text { if } p=\omega\left(n^{-\frac{k}{m}}\right) .\end{cases}
$$

To this end, for each $S \in\binom{[n]}{k}$, denote by X_{S} the indicator random variable of the event that S forms a graph in $G(n, p)$ that contains H. Then consider $X=\sum_{S} X_{S}$. When determining expectations of random variables, keep in mind that in the end, only the orders will matter (hence any constant factors can be ignored).

