Probabilistic method in combinatorics and algorithmics

WS 2021/22

Exercise sheet 2

Exercises for the exercise session on 27 October 2021
Problem 2.1. Let $n \in \mathbb{N}$ and let \mathcal{F} be an inclusion-free family of subsets of $[n]:=$ $\{1,2, \ldots, n\}$ (inclusion-free means that no element of \mathcal{F} is a proper subset of another element). Choose a permutation σ of $[n]$ uniformly at random and define the random variable

$$
X:=|\{k:\{\sigma(1), \sigma(2), \ldots, \sigma(k)\} \in \mathcal{F}\}| .
$$

(a) Argue that $\mathbb{E}[X] \leq 1$.
(b) Given a fixed set $F \in \mathcal{F}$ of size k, determine the number of permutations σ for which $\{\sigma(1), \sigma(2), \ldots, \sigma(k)\}=F$.
(c) Deduce that

$$
\mathbb{E}[X]=\sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{\mid \mathcal{F})}} .
$$

(d) Use (a) and (c) to prove that $|\mathcal{F}| \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}$.

Problem 2.2. Suppose an unbiased coin is tossed n times. For positive integers $k \leq n$, let A_{k} denote the event that out of these n tosses, there are k consecutive ones with the same outcome (i.e. k consecutive 'heads' or k consecutive 'tails'). Let $\varepsilon>0$. Prove that

$$
\frac{n-k+1}{k 2^{k-1}} \leq \mathbb{P}\left(A_{k}\right) \leq \frac{n}{2^{k-1}}
$$

and deduce that
(a) $\mathbb{P}\left(A_{k}\right) \xrightarrow{n \rightarrow \infty} 0$ if $k \geq(1+\varepsilon) \log _{2} n$;
(b) $\mathbb{P}\left(A_{k}\right) \xrightarrow{n \rightarrow \infty} 1$ if $k \leq \log _{2} n-(1+\varepsilon) \log _{2} \log _{2} n$.

Problem 2.3. Use Markov's inequality to prove Chebyshev's inequality.
Problem 2.4. Let m balls and n bins be given, where m, n are positive integers. Independently for each ball, we choose a bin uniformly at random and place the ball in that bin. For $i=1, \ldots, n$, denote by A_{i} the event that the i-th bin remains empty after distributing all balls. The number X of empty bins satisfies $X=X_{1}+\cdots+X_{n}$, where each X_{i} is the indicator random variable of A_{i}.
(a) Show that for any constant $\varepsilon>0$,

$$
\mathbb{E}[X] \xrightarrow{n \rightarrow \infty} \begin{cases}0 & \text { if } m \geq(1+\varepsilon) n \ln n, \\ \infty & \text { if } m \leq(1-\varepsilon) n \ln n .\end{cases}
$$

Hint. You can use that $1+x=\exp \left(x+o\left(x^{2}\right)\right)$ for $x=o(1)$.
(b) Prove that for any $i \neq j, X_{i}, X_{j}$ are negatively correlated and deduce that

$$
\mathbb{P}(\text { there exists an empty bin }) \xrightarrow{n \rightarrow \infty} \begin{cases}0 & \text { if } m \geq(1+\varepsilon) n \ln n, \\ 1 & \text { if } m \leq(1-\varepsilon) n \ln n .\end{cases}
$$

Problem 2.5. Like in Problem 2.2, let $k \leq n$ be positive integers and toss an unbiased coin n times. For each set S of k consecutive tosses, let A_{S} be the event that all these tosses have the same outcome. Denote by X_{S} the indicator random variable of A_{S} and set $X:=\sum_{S} X_{S}$. Let $h=h(n)$ be a function that tends to infinity as $n \rightarrow \infty$, but satisfies $h=o\left(\log _{2} n\right)$, and suppose that $k=\log _{2}(n)-h$.
(a) Show that $\mathbb{E}[X]=\frac{n-k+1}{2^{k-1}}$ and that this tends to ∞.
(b) Suppose that S, T are sets of k consecutive tosses and that $1 \leq|S \cap T| \leq k-1$. Determine $\mathbb{E}\left[X_{S} X_{T}\right]$.
(c) Prove that

$$
\frac{\sum_{S \neq T, X_{S}, X_{T} \text { dependend }} \mathbb{E}\left[X_{S} X_{T}\right]}{\mathbb{E}[X]^{2}} \xrightarrow{n \rightarrow \infty} 0
$$

and deduce that $\mathbb{P}(X \geq 1) \xrightarrow{n \rightarrow \infty} 1$.
Hint. Sort the sets S, T by the value of $j:=k-|S \cap T|$.

