

WS 2021/22

Exercise sheet 2

Exercises for the exercise session on 27 October 2021

Problem 2.1. Let $n \in \mathbb{N}$ and let \mathcal{F} be an inclusion-free family of subsets of $[n] := \{1, 2, \ldots, n\}$ (*inclusion-free* means that no element of \mathcal{F} is a proper subset of another element). Choose a permutation σ of [n] uniformly at random and define the random variable

$$X := \left| \left\{ k : \left\{ \sigma(1), \sigma(2), \dots, \sigma(k) \right\} \in \mathcal{F} \right\} \right|.$$

- (a) Argue that $\mathbb{E}[X] \leq 1$.
- (b) Given a fixed set $F \in \mathcal{F}$ of size k, determine the number of permutations σ for which $\{\sigma(1), \sigma(2), \ldots, \sigma(k)\} = F$.
- (c) Deduce that

$$\mathbb{E}[X] = \sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|\mathcal{F}|}}$$

(d) Use (a) and (c) to prove that $|\mathcal{F}| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$.

Problem 2.2. Suppose an unbiased coin is tossed n times. For positive integers $k \leq n$, let A_k denote the event that out of these n tosses, there are k consecutive ones with the same outcome (i.e. k consecutive 'heads' or k consecutive 'tails'). Let $\varepsilon > 0$. Prove that

$$\frac{n-k+1}{k2^{k-1}} \le \mathbb{P}(A_k) \le \frac{n}{2^{k-1}}$$

and deduce that

- (a) $\mathbb{P}(A_k) \xrightarrow{n \to \infty} 0$ if $k \ge (1 + \varepsilon) \log_2 n$;
- (b) $\mathbb{P}(A_k) \xrightarrow{n \to \infty} 1$ if $k \le \log_2 n (1 + \varepsilon) \log_2 \log_2 n$.

Problem 2.3. Use Markov's inequality to prove Chebyshev's inequality.

Problem 2.4. Let *m* balls and *n* bins be given, where *m*, *n* are positive integers. Independently for each ball, we choose a bin uniformly at random and place the ball in that bin. For i = 1, ..., n, denote by A_i the event that the *i*-th bin remains empty after distributing all balls. The number X of empty bins satisfies $X = X_1 + \cdots + X_n$, where each X_i is the indicator random variable of A_i .

(a) Show that for any constant $\varepsilon > 0$,

$$\mathbb{E}[X] \xrightarrow{n \to \infty} \begin{cases} 0 & \text{if } m \ge (1+\varepsilon)n \ln n, \\ \infty & \text{if } m \le (1-\varepsilon)n \ln n. \end{cases}$$

Hint. You can use that $1 + x = \exp(x + o(x^2))$ for x = o(1).

(b) Prove that for any $i \neq j, X_i, X_j$ are negatively correlated and deduce that

$$\mathbb{P}(\text{there exists an empty bin}) \xrightarrow{n \to \infty} \begin{cases} 0 & \text{if } m \ge (1+\varepsilon)n \ln n, \\ 1 & \text{if } m \le (1-\varepsilon)n \ln n. \end{cases}$$

Problem 2.5. Like in Problem 2.2, let $k \leq n$ be positive integers and toss an unbiased coin n times. For each set S of k consecutive tosses, let A_S be the event that all these tosses have the same outcome. Denote by X_S the indicator random variable of A_S and set $X := \sum_S X_S$. Let h = h(n) be a function that tends to infinity as $n \to \infty$, but satisfies $h = o(\log_2 n)$, and suppose that $k = \log_2(n) - h$.

- (a) Show that $\mathbb{E}[X] = \frac{n-k+1}{2^{k-1}}$ and that this tends to ∞ .
- (b) Suppose that S, T are sets of k consecutive tosses and that $1 \leq |S \cap T| \leq k-1$. Determine $\mathbb{E}[X_S X_T]$.
- (c) Prove that

$$\frac{\sum_{S \neq T, X_S, X_T \text{ dependend }} \mathbb{E}[X_S X_T]}{\mathbb{E}[X]^2} \stackrel{n \to \infty}{\longrightarrow} 0$$

and deduce that $\mathbb{P}(X \ge 1) \xrightarrow{n \to \infty} 1$.

Hint. Sort the sets S, T by the value of $j := k - |S \cap T|$.