
Advanced and algorithmic
graph theory

Master Study Mathematics

MAT.464UF

Summer term 2023

edited by

Joshua Erde and Philipp Sprüssel

Institute of Discrete Mathematics

TU Graz

Contents

1 Connectivity 9
1.1 Spanning trees . 9
1.2 k-connectedness . 17
1.3 2-connected graphs . 21
1.4 Edge-connectivity . 31

2 Matchings 33
2.1 Matchings in bipartite graphs . 33
2.2 Stable matchings . 37
2.3 Matchings in general graphs . 41

3 Planar graphs 46
3.1 Basic properties of planar graphs 46
3.2 Kuratowski’s theorem . 48
3.3 The proof of Kuratowski’s theorem 51
3.4 Graphs on other surfaces . 57
3.5 Planarity recognition algorithms 59

4 Colourings 62
4.1 Basic bounds . 62
4.2 Colouring planar graphs . 65
4.3 The greedy algorithm . 67
4.4 Brooks’ theorem . 69
4.5 Algorithms for optimal colourings 71
4.6 Colouring heuristics . 75
4.7 Edge-colouring . 78
4.8 List colouring . 82

5 Euler tours and Hamilton cycles 87
5.1 Euler tours . 87
5.2 Hamilton cycles . 89

5.2.1 Sufficient conditions for Hamilton cycles 89
5.2.2 Hamiltonian sequences . 93
5.2.3 A necessary condition for Hamilton cycles 96

1

CONTENTS 2

6 Extremal graph theory 97
6.1 Subgraphs . 97
6.2 Minors and topological minors 101
6.3 Hadwiger’s Conjecture . 104

CONTENTS 3

Basic notations and facts about graphs

We write N for the set of non-negative integers and note, in particular, that we
work under the convention that 0 ∈ N.

Definition (Graphs). A graph is a pair G = (V,E), where V = V (G) is a set
(called the vertex set of G) and E = E(G) is a set of 2-element subsets of V
(called the edge set of G). We write

|G| := |V (G)| and ∥G∥ := |E(G)| .

The elements of V (G) and E(G) are called vertices and edges, respectively. For
an edge {u, v}, we will also use the short notation uv.

All graphs in this course are assumed to be finite, i.e., |G|, and thus also
∥G∥, are finite.

Definition (Graph isomorphisms). Two graphs G,H are isomorphic if there
exists a bijection f : V (G) → V (H) such that

∀u, v ∈ V (G), uv ∈ E(G) ⇐⇒ f(u)f(v) ∈ E(H).

In words, vertices are adjacent in G if and only if their images under f are
adjacent in H.

Unless otherwise stated, we consider graphs up to isomorphisms.

Definition (Adjacencies, neighbourhood, degrees). Let G be a graph.

(i) Two vertices u, v of G are adjacent (or neighbours) if uv is an edge (of G).
Two edges are adjacent if they share a vertex. Finally, a vertex and an
edge are incident if the edge contains the vertex.

(ii) The set of all neighbours of a vertex v is called the neighbourhood of v and
is denoted by N(v). For a set U ⊂ V (G), we define the neighbourhood of
U to be the set

N(U) := {v ∈ V (G) \ U : v has a neighbour in U} =

(⋃
u∈U

N(u)

)
\ U.

(iii) The degree of a vertex v, denoted by dG(v) (usually abbreviated as d(v)
when the graph G is clear from the context), is the number of edges inci-
dent with v, or equivalently, the size of the neighbourhood of v. Vertices
of degree zero are called isolated.

(iv) The minimum degree δ(G), the average degree d(G), and the maximum
degree ∆(G) of G are defined by

δ(G) := min
v∈V (G)

d(v), d(G) :=
1

|G|
∑

v∈V (G)

d(v), ∆(G) := max
v∈V (G)

d(v).

(v) If all vertices of G have degree r, then we call G r-regular. A 3-regular
graph is also called cubic.

CONTENTS 4

Proposition 0.1. For every graph G, we have

δ(G) ≤ d(G) ≤ ∆(G) and d(G) =
2 ∥G∥
|G|

.

In particular, the number of vertices in G with odd degrees is even.

Proof. The inequalities are trivial, and the second and third statement follows
from the fact that each edge is counted exactly twice in

∑
v∈V (G) d(v), i.e.,∑

v∈V (G)

d(v) =
∑

v∈V (G)

∑
e∈E(G):

e incident to v

1 =
∑

e∈E(G)

∑
v∈V (G):

v incident to e

1 =
∑

e∈E(G)

2 = 2||G||,

which is sometimes known as the handshaking lemma. The second statement
follows immediately, and the third since

∑
v∈V (G) d(v) = 2||G|| is even.

Definition (Other notions of graphs). Let V,E be sets.

(i) We call (V,E) a multigraph if E is a multiset whose elements are subsets
of V of sizes 1 and 2. Edges that appear multiple times in E are multiedges
(also double edges, triple edges etc. depending on the multiplicity), edges
of size 1 are loops.

In multigraphs, degrees are usually defined as the number of incident
edges, where loops are counted twice. Thus, in multigraphs, we have
d(v) ≥ |N(v)|, but in general not equality.

u v

w

x y

Figure 1: A representation of a multigraph on vertex set {u, v, w, x, y}. We have
a loop at u, a double edge between v and w, and a triple edge between x and y.

(ii) If E ⊂ V 2 \ {(v, v) : v ∈ V }, then we call (V,E) a directed graph. We say
that an edge (u, v) is directed from u towards v.

u v

w

Figure 2: A representation of a directed graph on vertex set {u, v, w}.

In a directed graph D, one usually distinguishes between the indegree
d−(v) of v, which is the number of edges towards v, and the outdegree

CONTENTS 5

d+(v) of v, which is the number of edges away from v. Starting from
these, one defines δ−(D), δ+(D), d−(D), d+(D), ∆−(D), and ∆+(D) as
before.1

(iii) If f : E → R is a function, then we call (V,E, f) a weighted graph. For
every edge e, the value f(e) is its weight.

Definition (Subgraphs). Let G,H be graphs.

(i) H is called subgraph of G, which we write as H ⊆ G, if V (H) ⊆ V (G) and
E(H) ⊆ E(G). It is a proper subgraph, which we write H ⊊ G, if at least
one of the two relations is not an equality.

(ii) A subgraph H of G is spanning if V (H) = V (G).

(iii) A subgraph H of G is induced if E(H) = E(G) ∩
(
V (H)

2

)
.

(iv) Given subgraphs H1, H2 of G, we write

H1 ∪H2 := (V (H1) ∪ V (H2), E(H1) ∪ E(H2))

and H1 ∩H2 := (V (H1) ∩ V (H2), E(H1) ∩ E(H2)).

Definition (Paths, cycles, complete graphs). Let n ∈ N.

(i) A path of length n is a graph P on vertices v0, . . . , vn, for which vivj ∈ E(P)
if and only if i− j = ±1. We write P = v0 . . . vn.

For a path P and a vertex v of P , we write Pv for the subpath of P until
(and including) v. Analogously, vP denotes the subpath of P starting at
v.

(ii) If A and B are vertex sets in a graph G, an A–B path in G is a path
P = v0 . . . vn that is a subgraph of G and satisfies V (P) ∩ A = {v0} and
V (P) ∩ B = {vn}. In particular, if v0 ∈ A ∩ B, then the path P = v0 of
length zero is an A–B path.

If H is a subgraph of G, then an H-path (in G) is a path in G of length
at least one that shares only its end vertices with H.

(iii) For n ≥ 3, a cycle of length n is a graph C on vertices v1, . . . , vn, for which
vivj ∈ E(C) if and only if i− j = ±1 mod n.

(iv) A complete graph is a graph with E =
(
V
2

)
. By Kn we denote the complete

graph on n vertices.

In order to keep notations simple, we shall omit set brackets whenever pos-
sible; for instance we will write a–b path instead of {a}–{b} path.

Definition (Complete and independent sets). Let G be a graph, U ⊆ V (G),

and F ⊆
(
V (G)

2

)
.

(i) By G[U] we denote the induced subgraph
(
U,E(G) ∩

(
U
2

))
of G. We say

that G[U] is the graph that G induces on U .

1Easy exercise: Show that d−(D) = d+(D).

CONTENTS 6

(ii) U is called complete (or a clique) if G[U] is complete, i.e., if the vertices
of U are pairwise adjacent.

(iii) U is independent (or stable) if G[U] is edgeless, i.e., if no two vertices of
U are adjacent.

(iv) F is independent if its elements are pairwise disjoint, i.e., if no two edges
in F are adjacent.

We also write G − U for the graph G[V (G) \ U] obtained by deleting all
vertices in the set U (and all edges incident with at least one such vertex) and
write G−F and G+F for the graphs (V (G), E(G) \F) and (V (G), E(G)∪F),
respectively.

Definition (Bipartite graphs). A graph G is called bipartite if its vertex set
can be partitioned into two independent sets. This partition is not necessarily
unique, but when a bipartite graph G is given, we will usually assume that it
comes with a partition into parts A and B.

Given s, t ∈ N>0, we define the complete bipartite graph

Ks,t := (A ∪B,A×B),

where A,B are disjoint and |A| = s, |B| = t.

Proposition 0.2. A graph is bipartite if and only if it does not contain a cycle
of odd length.

Proof. Exercise.

Definition (Contraction, minor, subdivision). Let G be a graph.

(i) For a vertex set S in G, we say that the graph G/S defined by

V (G/S) := V (G− S) ∪ {S},
E(G/S) := E(G− S) ∪ {vS : ∃s ∈ S with vs ∈ E(G)}

is obtained from G by contracting S. We also say that G/S is a contraction
of G. For disjoint vertex sets S1, . . . , Sk, we define the contraction as

G/(S1, . . . , Sk) :=
((

(G/S1)/ . . .
)
/Sk

)
.

Observe that the result does not depend on the order of the sets.

(ii) If S1, . . . , Sk are disjoint connected vertex sets (called branch sets) in G,
then every subgraph of G/(S1, . . . , Sk) is called a minor of G. In partic-
ular, every subgraph of G is also a minor of G.

(iii) We say that G is a subdivision ofH if we can obtain G fromH by replacing
each edge e ∈ E(H) by a path of length at least one. In that case, the
vertices of G that correspond to vertices of H are called branch vertices.

If G has a subgraph that is a subdivision of H, we call H a topological
minor of G.

CONTENTS 7

S1

S2

S3 S4

S5

G

S1

S2

S3 S4

S5

G/(S1, . . . , S5)

Figure 3: Disjoint connected vertex sets S1, . . . , S5 in a graphG and the resulting
contraction G/(S1, . . . , S5) = K5. Every subgraph of K5 is thus a minor of G.

G H

Figure 4: A graph G and a subdivision H of G. The branch vertices are drawn
thick. G is a topological minor of any graph that contains H as a subgraph.

Algorithms and running time

We will compare the running times, i.e., the numbers of operations, of the
algorithms in this course with respect to the size of the input graph G, i.e., |G|
and ∥G∥. To simplify notation, we shall use the variables n and m instead of |G|
and ∥G∥, respectively, whenever we talk about running time. We will usually
be interested in the order of the running time, that is, we disregard constant
factors.

Definition (Landau notation). If f, g : N → R>0 are functions, we write

� f(n) = O(g(n)) if there exists a constant c+ > 0 such that f(n) ≤ c+g(n)
for all (sufficiently large) n;

� f(n) = Ω(g(n)) if there exists a constant c− > 0 such that f(n) ≥ c−g(n)
for all (sufficiently large) n;

� f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)).

For functions with multiple variables, the notation is analogous.

In some cases, we will be able to express the running time in the form
Θ(g(n)), which means that the running time has the same order for all graphs,
independent of their structure. In other cases, some graphs will have a much
longer running time than others, even if both have the same numbers of vertices
and edges. In that sense, the notation O(g(n)) is a worst case description, which
means that an algorithm that, for instance, needs exponential time for a small
fraction of all graphs and linear time for all others, will be considered “worse”
or “slower” than an algorithm that needs, say, quadratic time for all graphs.

CONTENTS 8

Remark. A smaller order running time does not necessarily mean that an al-
gorithm is faster in practice. An algorithm with running time

1010
1010

n = Θ(n)

has smaller order running time than an algorithm with running time

10−1010
10

n2 = Θ(n2),

but the latter algorithm will be much faster for all “sensible” input sizes.

Chapter 1

Connectivity

Definition (Connected graphs, components). Let G be a non-empty graph.

(i) G is called connected if it contains a u–v path for all u, v ∈ V (G).

(ii) A set U ⊆ V (G) is connected (in G) if G[U] is connected.

(iii) If U is connected and maximal (with respect to inclusion) with this prop-
erty, then we call G[U] a component of G.

Definition (Forests, trees). A graph without cycles is called forest. A connected
forest is a tree. Thus, the components of a forest are trees. A vertex of degree
one in a forest is called leaf.

Theorem 1.1. The following statements are equivalent for a non-empty graph
T .

(i) T is a tree;

(ii) for all vertices u, v ∈ V (T), T contains a unique u–v path;

(iii) T is minimally connected, i,e., T is connected, but for every edge e ∈ E(T),
T − e is not connected;

(iv) T is maximally cycle-free, i,e., T contains no cycles, but for every e ∈(
V (T)

2

)
\ E(T), T + e contains a cycle;

(v) T is connected and ∥T∥ = |T | − 1;

(vi) if |T | ≥ 2, then T has at least two vertices of degree one, and for every
such vertex v, T − v is a tree.

Proof. Exercise.

1.1 Spanning trees

Definition (Spanning trees). A spanning tree of a graph G is a tree that is a
spanning subgraph of G.

Proposition 1.2. Every connected graph G has a spanning tree.

9

CHAPTER 1. CONNECTIVITY 10

Proof. G is connected, and so contains a connected spanning subgraph. Let T
be a minimally connected spanning subgraph of G. By Theorem 1.1, T is a tree
and thus a spanning tree of G.

Proposition 1.2 gives a pure existence statement. The natural question aris-
ing from this is how to find a spanning tree of a given connected graph. Or
more generally: If G is any graph (not necessarily connected), describe an al-
gorithm that finds the components of G and produces a spanning tree of each
component.

There is a obvious ‘local’ way to extend a tree T in G to a larger one: Given a
vertex u in T , we search for a vertex in N(u) which is not in T and add the edge
uv (and vertex v) to T . Clearly if we repeat such a step, we will eventually build
a spanning tree of G, if one exists, however in order to give an algorithm we
will need to choose an order in which to make these local extensions. There are
two fundamentally different classical ways to solve this problem, called breadth
first search and depth first search, which illustrate the difference between two
common data structures, a queue and a stack.

In breadth first search (BFS), we keep track of the vertices whose neighbours
we will explore in a queue Q, a first in, first out data structure. We start at
some given vertex u, which we call the root, and initially Q = {u}. We first find
all of the neighbours of u and add them one by one to the back of the queue,
adding the edges from u to these vertices to our tree T . Once there are no more
neighbours left to find, we delete u from the queue.

We now move on the the next vertex v in the queue. We find all the neigh-
bours of v which are not already in T and add them to the back of the queue,
adding the edges from u to these vertices to T . Once there are no more neigh-
bours left to find, we delete v from the queue. We repeat this step until the
queue is empty. Note that the vertices which are added to the queue first, have
their neighbourhoods searched first.

2

1

u 0 1

2
2

2

1
2

2

Figure 1.1: Finding a spanning tree (bold) in a connected graph via breadth
first search. The red numbers are the layers of the vertices.

A simplified program implementing this strategy looks as follows.

CHAPTER 1. CONNECTIVITY 11

PROCEDURE BFS(G,u)
BEGIN

known[u] := TRUE;
layer[u] := 0;
Queue Q := (u);
For (v ∈ V (G)− u){

known[v] := FALSE;
layer[v] := ∞;

}
WHILE (Q ̸= ∅){

v := First(Q);
FOR (w ∈ N(v)){

IF (known[w] = FALSE){
known[w] := TRUE;
Concatenate (Q,w);
layer[w] := layer[v] + 1;
parent[w] := v;

}
}
Remove v from Q;

}
END

If we want to explore all components of G, we need to incorporate the BFS
procedure in a main program that recursively finds a yet undiscovered vertex
v and starts exploring the component containing v by calling BFS(G,v). The
running time of such a program can be seen to be Θ(n+m).

Proposition 1.3. Suppose that we run BFS(G,u) for a graph G and u ∈ V (G).

(i) The vertices w ∈ V (G) with known[w] = TRUE are precisely the ones that
lie in the component C of G that contains u.

(ii) The graph T = (V (C), EBFS) with

EBFS := {{w,parent[w]} : w ∈ V (C − u)}

is a spanning tree of C.

(iii) The value layer[w] equals the distance of u and w, that is, the length of the
shortest u–w path in G (where vertices with no path between them—i.e.
vertices in different components—have infinite distance by convention).

Proof. It will be useful to first prove the following three claims:
Firstly, suppose that at some point in the algorithm Q = (v0, v1, . . . , vr),

then we claim that

layer[v0] ≤ layer[v1] ≤ . . . ≤ layer[vr] ≤ layer[v0] + 1.

This condition is trivially true at the start of the algorithm. Now each time the
inner loop runs the element v0 is removed from the queue and some neighbours
w1, . . . , wi (potentially none) of v0 are added to the back of the queue, where
layer[wi] = layer[v0] + 1, and so the condition remains true.

Secondly, we claim that if v is removed from Q before w is, then layer[v] ≤
layer[w]. Clearly it is sufficient to prove the statement when v and w are removed

CHAPTER 1. CONNECTIVITY 12

consecutively. In this case, either w is already in the queue when we run the
inner loop for N(v), in which case layer[v] ≤ layer[w] by the above claim, or v
is the only element in Q when we run the inner loop for N(v), and w is added
to Q in this step, and so layer[w] = layer[v] + 1.

Finally, we claim that if known[w]=TRUE, then layer[w] ≥ d(u,w). Indeed,
since (w,parent[w]) ∈ E(G) for all such w, and the layer of parent[w] is one
smaller than the layer of w, it follows that w,parent[w],parent[parent[w]] . . . is
a path of length layer[w] which ends at the unique vertex u with layer 0.

We can now prove (iii), that layer[w] = d(u,w) for all w with known[w] =TRUE.
Note that, d(u,w) < ∞ if and only if w ∈ V (C) and layer[w] is defined if and
only if known[w] =TRUE and so, in particular, (i) follows from (iii).

Let w be a vertex with d(u,w) minimal such that layer[w] ̸= d(u,w), where
by the above we may assume that layer[w] > d(u,w). Let v be a neighbour of
w with d(u, v) = d(u,w)− 1, and note that by assumption

layer[w] > d(u,w) = d(u, v) + 1 = layer[v] + 1. (1.1)

Since known[v] =TRUE, at some point v is added to Q and since the algorithm
terminates when Q is empty, at some point v = First(Q) and we run the inner
loop for N(v).

If known[w] =FALSE at this point, then during the loop we set layer[w] =
layer[v] + 1, contradicting (1.1).

If known[w]=TRUE, and w has already been deleted from Q, then w was
deleted from Q before v and so layer[w] ≤ layer[v], again contradicting (1.1).

Finally, if known[w]=TRUE and w is still in Q, then both v and w are in Q
at the same time, and so layer[w] ≤ layer[v] + 1, again contradicting (1.1).

For (ii) we first note that, since X = C(V), parent[w] is defined for all w ∈
V (C−u) and so T is well-defined. Furthermore, since every vertex w ∈ V (C)−u
is connected to its parent, and the layer of the parent is strictly smaller than
the layer of the vertex, it follows that T contains a path from each vertex to the
unique vertex u with layer[u] = 0. In particuarly, T is connected.

Furthermore, if we orient each edge of T from w to parent[w], then each
vertex has outdegree one in this orientation. In particular, if T contains a cycle,
then it must be oriented cyclically. However, since each oriented edge goes to a
vertex with strictly smaller layer, such a cycle cannot exist. It follows that T is
a tree, and T spans V (C) by construction.

In contract, in depth first search (DFS) we keep track of the vertices whose
neighbourhoods we will explore in a stack S, a first in, last out data structure.

More concretely, we start with some given root vertex u and with a stack
S = {u}. We find some neighbour v of u and add v to the front of the stack,
and add the edge uv to our tree T .

We now consider the first vertex v in the stack. If v has no neighbours
outside of T , we delete v from the stack. Otherwise, we find some neighbour w
of v outside of T and add w to the front of the stack, and add the edge vw to
our tree T . We repeat this step until the stack is empty. Note that the vertices
which are added to the queue last, have their neighbourhoods searched first.

Again, we can write this approach down in a simple program. However,
rather than explicitly building a stack to keep track of the order we search the
neighbourhoods, we will instead give a recursive algorithm, and the order in

CHAPTER 1. CONNECTIVITY 13

which we search the neighbourhoods will be determined by an implicit stack,
given by the order that the subroutines of the algorithm are called.

PROCEDURE DFS(G,u)
BEGIN

t := t+ 1;
DFSnum[u] := t;
FOR (v ∈ N(u)){

IF (known[v] = FALSE){
known[v] := TRUE;
parent[v] := u;
DFS(G,v);

}
}

END

This procedure needs a main program that sets the initial values and starts
the procedure in each component.

BEGIN
FOR (v ∈ V (G)){

DFSnum[v] := 0;
known[v] := FALSE;
parent[v] := v;

}
t := 0;
FOR (v ∈ V (G)){

IF (known[v] = FALSE){
known[v] := TRUE;
DFS(G,v);

}
}

END

1

2

3 4

5

6 7 8

910

Figure 1.2: Exploring a graph via depth first search. The numbers are the values
of DFSnum, the bold edges are the edges from vertices to their parent.

We note that, as with BFS, the main program for DFS constructs a spanning
tree for each component of a (not necessarily connected) graph G in time Θ(n+
m).

Proposition 1.4. Suppose that G is connected. Let u ∈ V (G) and suppose that
we run DFS(G,u) (with the initial values provided by the main program).

CHAPTER 1. CONNECTIVITY 14

(i) The graph T = (V (G), EDFS) with

EDFS := {{v,parent[v]} : v ∈ V (G)− u}

is a spanning tree of G.

(ii) DFS(G,u) has running time Θ(n+m).

(iii) Suppose that vw ∈ E(G) and DFSnum[v] < DFSnum[w]. Let P = v0 . . . vk
be the unique v–w path in T , then vi−1 = parent[vi] for all i ∈ {1, . . . , k}.

Proof. (i) T is a spanning subgraph of G by definition (as long as it is well-
defined). We first note that, since G is connected, DFS(G, v) is run pre-
cisely once for each vertex v ∈ V (G) during the run of the algorithm.
Indeed, it runs at most once, since known[v] is set to be TRUE when
DFS(G, v) runs, and conversely it is easy to show by induction on d(u, v)
that DFS(G, v) runs for each v ∈ V (G). In particular, parent[v] is defined
for all v ∈ V (G) − u, and so T is well-defined, and DFSnum[v] is set for
all v ∈ V (G).

For t = 1, . . . , |G|, denote by Vt the set of vertices with DFSnum[v] ≤ t.
First observe that |Vt| = t (the algorithm does not stop until the whole
graph is explored) and thus in particular V|G| = V (G). We prove by
induction that T [Vt] is a tree for all t. The induction basis is clear, because
V1 is a single vertex. For the induction step, observe that the unique vertex
in Vt+1 \ Vt has degree one in T [Vt+1] and thus the implication (v) ⇒ (i)
of Theorem 1.1 proves that T [Vt+1] is a tree, because T [Vt] is.

(ii) We run DFS(G,v) exactly once for each vertex v; during this run, we check
each neighbour of v. Thus, every vertex of G appears at least once and
every edge of G is checked exactly twice, once from each of its end vertices.
This implies that the running time is Θ(n+m).

(iii) Suppose that DFSnum[v] = t. If t = 1 (i.e. v = u), then it is clear that P
has the desired property. Indeed, since DFSnum[parent[x]] < DFSnum[x]
for all x ̸= u, for each vertex x ̸= u the path u,parent[u],parent[parent[u], . . .,
which is contained in T , must terminate at u and, since T is a tree, this
is the unique u− x path in T by Theorem 1.1 (ii).

If t > 1, consider the time when DFS(G,v) runs. All vertices in Vt−1 will
be rejected by the IF-loop. Thus, if C is the component of G− Vt−1 that
contains v (and hence also w), then DFS(G,v) has the same output as
DFS(C,v) would have, only the values of DFSnum are shifted by t − 1.
Since v is the root of the tree produced by DFS(C,v), P has the desired
property.

Remark. Both BFS and DFS find spanning trees in linear time. The advantage
of BFS is that it also finds the shortest paths from the root to any other vertex.
The main benefit of DFS is the additional information from Proposition 1.4(iii)
about the edges of the graph which are not in the spanning tree. We will see a
possible way to exploit this knowledge later in the course.

In many applications, the graph G (which we now assume to be connected)
will be weighted, where the weights on the edges correspond to some ‘cost

CHAPTER 1. CONNECTIVITY 15

function’. In that situation, the goal is to find a ‘cheapest’ spanning tree, that
is, a spanning tree of smallest total weight. For this problem, we have several
different algorithms.

Alg. 1. Start with T1 = (V (G), ∅) and recursively add edges as follows. Among
all edges e ∈ E(G) \E(T1) for which T1 + e is cycle-free, choose one with
the smallest weight and add it to T1. The algorithm ends when no more
edges can be added.

Alg. 2. Start with T2 = G and recursively delete edges as follows. Among all edges
e ∈ E(T2), for which T2− e is connected, choose one of largest weight and
delete is from T2. The algorithm ends when no more edges can be deleted.

While these two algorithms are ‘global’ in the sense that the information
about all edges is used in every step, there are also ways to construct a spanning
tree with only ‘local’ information.

Alg. 3. For some vertex v, start with T3 = ({v}, ∅) and recursively add vertices
and edges as follows. Among all edges from V (T3) to V (G) \ V (T3),
pick one with smallest weight and add it (together with its end vertex in
V (G) \ V (T3)) to T3. The algorithm ends when T3 spans G.

Our last algorithm only works if we assume all weights in the graph to be
distinct.

Alg. 4. Start with T4 = (V (G), ∅) and recursively add edges as follows. For every
component H of T4, among all edges from V (H) to V (G)\V (H), pick one
with smallest weight. We then add all these edges to T4 simultaneuosly.
The algorithm ends when T4 is connected.

If, say, edges uv, vw, and wu have the same weight, then Algorithm 4 can
create a cycle within the first step.

4.5

10 1.81
2

7

6

4.4
5

3

Figure 1.3: A weighted graph and its spanning tree of minimal total weight.
Check that each of the four algorithms results in this spanning tree.

Proposition 1.5. Algorithms 1–3 produce a spanning tree of minimal total
weight. If all edge weights are distinct, then there is a unique such spanning
tree, and Algorithm 4 produces this spanning tree as well.

Proof. We prove the result for Algorithms 3 and 4; the proofs for the other two
algorithms are similar and left as an exercise. We start with Algorithm 4, under
the additional condition that all weights are distinct.

CHAPTER 1. CONNECTIVITY 16

By construction, T4 is spanning and connected when the algorithm stops,
it remains to prove that it is also acyclic. In fact, it will be useful to prove
a slightly stronger statement: We claim that for any cycle C of G if e is the
(unique!) edge of C with maximal weight, then e is not in T4. Note that, in
particular, the claim implies that T4 is acyclic.

To prove the claim, let C be a cycle in G and let e be the edge of maximal
weight in C. Suppose that e is not in T4 at some time during Algorithm 4. Let
H be a component of T4 (at that time) that contains an end vertex of e. If
e is an edge from V (H) to V (G) \ V (H), then there is some edge e′ ∈ C − e
that also goes from V (H) to V (G) \ V (H), see Figure 1.4. Since e′ has smaller
weight than e, the algorithm does not add e to T4 in this step. Since e is not in
T4 at the beginning of the algorithm, it is never added to T4. Therefore, T4 is
cycle-free and thus a spanning tree.

C
H

e

e′

Figure 1.4: A cycle C in G and a component H of T4 at an intermediate stage
of the algorithm. If e has the largest weight on C and is not yet in T4, then it
will not be added in the next step (and thus will never be added).

We shall now prove that T4 has strictly smaller total weight than all other
spanning trees of G. This will prove both the uniqueness of the spanning tree
with smallest total weight and the fact that Algorithm 4 constructs this spanning
tree. Among all spanning trees of G, let T be one with smallest total weight.
If T ̸= T4, then T4 contains edges that are not in T , since all trees on the
same vertex set have the same number of edges by the implication (i) ⇒ (v) of
Theorem 1.1. Let e ∈ E(T4) \E(T). Then T + e contains a cycle C, because T
was maximally cycle-free, by implication (i) ⇒ (iv) of Theorem 1.1.

Let e′ be the edge of C with the largest weight and consider the graph
T ′ := T + e − e′, see Figure 1.5. We removed an edge from a cycle of T + e,
hence T ′ is connected. Now the implication (v) ⇒ (i) of Theorem 1.1 shows
that T ′ is a spanning tree. Furthermore, as we have seen above, e′ is not in
T4 and thus in particular e′ ̸= e. Therefore, e′ has larger weight than e. This
implies that T ′ has smaller total weight than T , a contradiction to the choice
of T .

Let us now consider Algorithm 3. The graph T3 is a tree throughout the
algorithm, because we start with a tree and add a vertex of degree one in each
step, which results in a tree by the implication (vi) ⇒ (i) of Theorem 1.1. Since
the algorithm only ends when T3 spans G, T3 is a spanning tree.

It remains to prove that T3 has smallest total weight, even if there are edges
with identical weights. Let e1, e2, . . . , en−1 be the edges in T3, in the order which
they were added to T3. Suppose that T is a spanning tree of G of smallest total

CHAPTER 1. CONNECTIVITY 17

e

T4 T

e e′
C

T ′

Figure 1.5: Constructing a tree of smaller total weight if T ̸= T4.

weight, which contains as large an initial segment of the sequence e1, e2, . . . , en−1

as possible. We will show that T = T3, and hence T3 has smallest total weight.
Indeed, if T ̸= T3 then let i be minimal such that uv := ei ̸∈ E(T). Consider

the point at which we added ei to T3. At this stage in the algorithm there is
some vertex set S such that ei is an edge of minimal weight between S and
V (G) \ S. Since T is a spanning tree and ei ̸∈ E(T), T + ei contains a cycle C,
and C must contain an even number of edges between S and V (G) \ S. Hence
there is some edge f ̸= ei such that f ∈ E(C) and f is an edge between S and
V (G) \ S. Hence, by our assumption on ei it follows that ei has weight at most
as large as f .

However, then T ′ = T+ei−f is a spanning whose weight is at most that of T ,
and hence, by our assumption on T , T ′ is also a spanning tree of minimal weight.
Furthermore, since we added the edges e1, . . . , ei−1 to T3 before ei, it follows that
the endvertices of e1, e2, . . . , ei−1 are all contained in S, and so f is not equal
to one of e1, e2, . . . , ei−1. Hence, T ′ contains e1, e2, . . . , ei, contradicting our
assumption that T was a smallest weight spanning tree containing the largest
initial segment of e1, e2, . . . , en−1.

1.2 k-connectedness

Definition (k-connectedness). Let k ∈ N. A graph G is called k-connected if
|G| > k and for every set U ⊂ V (G) with |U | < k, the graph G−U is connected.

In other words, a graph with more than k vertices is k-connected if we have
to delete at least k vertices to disconnect it. Clearly, every non-empty graph is 0-
connected, so this is not a particularly interesting property, and 1-connectedness
is equivalent to connectedness, provided that the graph has at least two vertices.

Definition (Connectivity). For every non-empty graph G, we define the con-
nectivity of G to be

κ(G) := max{k ∈ N : G is k-connected}.

Our definition of connectivity is the answer to the question “How many
vertices do we have to delete in order to disconnect the graph?” On the other

CHAPTER 1. CONNECTIVITY 18

hand, 1-connectedness is equivalent to asking for one path between each pair
of vertices. It would thus be natural to assume that k-connectedness should
be defined by the existence of k paths between each pair of vertices. We shall
shortly see that this property is in fact equivalent to our definition.

Definition (Internally disjoint paths). We say that paths P1, . . . , Pk are inter-
nally disjoint if, for all i ̸= j, the intersection Pi ∩Pj consists solely of common
end vertices of Pi and Pj (in particular, the paths do not share edges).

Theorem 1.6. Let k ∈ N. A graph G with at least two vertices is k-connected
if and only if for all distinct vertices u, v ∈ V (G), there are k internally disjoint
u–v paths in G.

We shall prove Theorem 1.6 with the help of a much more general result. In
order to formulate this result, we need two more notations.

Definition (A–B separator). Given sets A,B ⊆ V (G), we say that a set S of
vertices or edges separates A and B if every A–B path in G meets S. If S is a
set of vertices, we also call it an A–B separator.

Definition (a–B fan). Suppose that a ∈ V (G) and B ⊆ V (G) \ {a}. If
P1, . . . , Pk are a–B paths that meet only in a, we say that these paths form
an a–B fan.

Theorem 1.7 (Menger 1927). Let G be a graph.

(i) For any A,B ⊆ V (G), the maximum number of pairwise disjoint A–
B paths equals the size of a smallest A–B separator.

(ii) For all distinct vertices a, b ∈ V (G) with ab /∈ E(G), the maximum number
of internally disjoint a–b paths equals the size of a smallest a–b separator
in V (G) \ {a, b}.

(iii) For all a ∈ V (G) and B ⊆ V (G) \ {a}, the largest number of paths in an
a–B fan equals the size of a smallest a–B separator in V (G) \ {a}.

The three statements in Theorem 1.7 are also called the “set version”, the
“vertex version”, and the “fan version” of Menger’s theorem.

Proof of Theorem 1.6 from Theorem 1.7. The statement is trivial for k = 0 and
k = 1, thus we may assume that k ≥ 2.

“=⇒”. Let G be k-connected and suppose, for contradiction, that there
are vertices u ̸= v that are not linked by k internally disjoint paths. By
Theorem 1.7(ii), this implies that uv ∈ E(G). Then G′ := G − uv has at
most k − 2 internally disjoint u–v paths and thus contains a u–v separator
S′ ̸∋ u, v with |S′| ≤ k − 2 by Theorem 1.7(ii). As G is k-connected, we have
|V (G′)| = |V (G)| > k and thus G′ −S′ −u− v contains some vertex w. Now S′

separates w from u or from v in G, say from u. But then S′ ∪ {v} is a u–w sep-
arator in G of size at most k − 1, contradicting the fact that G is k-connected.

“⇐=”. For any S ⊂ V (G) with |S| < k and any two vertices u, v ∈ G−S, the
set S cannot meet all k internally disjoint u–v paths, hence G− S is connected
and thus G is k-connected if we know that |G| > k. To prove this, let u ̸= v
be any two vertices and choose internally disjoint u–v paths P1, . . . , Pk, ordered
(increasingly) by their length. While P1 might be just an edge, each other Pi

has to have length at least two and thus contains some vertex wi /∈ {u, v}. Now
u, v, w2, . . . , wk are k + 1 distinct vertices; in particular, |G| > k.

CHAPTER 1. CONNECTIVITY 19

u
v

w

S′

S′ ∪ {v}

Figure 1.6: Finding a small separator if u, v are not linked by k internally
disjoint paths.

Proof of Theorem 1.7. We first prove that all three statements are equivalent.
“(i) ⇒ (ii)”. Let a, b be given as in (ii). Fix a largest set Pa,b of internally

disjoint a–b paths and a smallest a–b separator S in V (G) \ {a, b}.
Set A := N(a) and B := N(b). Any a–b path contains a unique A–B path

and vice versa, any A–B path can be extended to an a–b path by adding one
edge to a and b, respectively. Thus, Pa,b corresponds to a largest set PA,B of
disjoint A–B paths, and both sets contain the same number of paths.

Since each a-b separator in V (G) which contains neither a nor b is also an A-
B separator, S is an A–B separator. Furthermore, since each a–b path contains
an A–B path, each A–B separator is also an a-b separator. It follows that S is
also a smallest A–B separator. Hence, by (i), we have |PA,B | = |S| and thus
|Pa,b| = |S|, as desired.

a b

A = N(a) B = N(b)

Figure 1.7: Deriving the vertex version of Menger’s theorem from the set version.
Any largest set of internally disjoint a–b paths (bold) corresponds to a largest
set of disjoint A–B paths, while any smallest A–B separator (red vertices) is
also a smallest a–b separator in V (G) \ {a, b}.

“(ii) ⇒ (iii)”. Let a,B be given as in (iii) and let Pa,B and S be a largest
a–B fan and a smallest a–B separator in V (G) \ {a}, respectively.

Add a new vertex b to the graph and connect it to all vertices in B to
obtain a new graph G′. Analogously to the first implication, Pa,B corresponds
to a largest set Pa,b of internally disjoint a–b paths, while S is a smallest a–
b separator in V (G′) \ {a, b}. By construction, ab /∈ E(G′) and thus we can
apply (ii) to G′ to deduce that |Pa,b| = |S| and thus |Pa,B | = |S|, as desired.

“(iii) ⇒ (i)”. Let A,B be given as in (i). Add a vertex a to the graph and
connect it to all of A. Like in the previous case, (i) follows.

CHAPTER 1. CONNECTIVITY 20

a b

B

Figure 1.8: Deriving the fan version of Menger’s theorem from the vertex ver-
sion.

a

A B

Figure 1.9: Deriving the set version of Menger’s theorem from the fan version.

It remains to prove one of the three statements; we shall prove (i). Let S
be a smallest A–B separator. We know that there are at most k := |S| disjoint
A–B paths, because S contains a vertex in every A–B path; we thus need to
find k such paths. Let P be a set of disjoint A–B paths. We say that a set Q
of |P|+ 1 disjoint A–B paths extends P if(

A ∩ V
(⋃

P
))

⊊
(
A ∩ V

(⋃
Q
))

and
(
B ∩ V

(⋃
P
))

⊊
(
B ∩ V

(⋃
Q
))

,

where
⋃
P denotes the union of all paths in P. We aim to prove that if P has

less than k elements, then it can be extended; this statement will then clearly
imply (i). We prove this claim for fixed G and A (but for all B simultaneuosly)
by induction on the number |

⋃
P| of vertices in (the paths in) P.

Set l := |P| < k. The set B ∩
⋃

P is too small to separate A and B and
thus G− (B ∩

⋃
P) contains an A–B path R. If R avoids all paths in P, then

Q := P ∪ {R} extends P. (In particular, this is the case when P = ∅, thus
proving the induction basis.) We may thus assume that R contains vertices in⋃
P. Let x be the last such vertex on R and let P be the path in P that x lies

on. By the choice of R, we have x /∈ B.
Set B′ := B ∪ V (xP ∪ xR) and P ′ := (P \ {P}) ∪ {Px}. We know that

|P ′| = l < k and |
⋃
P ′| < |

⋃
P|. Moreover, A and B′ cannot be separated

by less than k vertices, because each such separator would also separate A and
B. Thus, we can apply the induction hypothesis to P ′ and obtain a set Q′ of
l + 1 disjoint A–B′ paths that extends P ′. This in particular means that all
end vertices of paths in P ′ are also end vertices of paths in Q′. Thus, one path
Q ∈ Q′ ends in x, one path Q′ ends in a vertex y ∈ B′ \V (

⋃
P ′), and the other

l − 1 paths end in
(
V (
⋃
P ′) ∩B′) \ {x}. If y ∈ B \ (V (P) ∪ V (R)), then

Q := (Q′ \ {Q}) ∪ {QxP}

CHAPTER 1. CONNECTIVITY 21

A B

P

P

R

x B′

Figure 1.10: How the vertex x and the set B′ arise from a path system P (bold)
and a path R.

is an extension of P. Otherwise, we have y ∈ V (xP ∪ xR) \ {x}. If y ∈ V (xP),
then

Q := (Q′ \ {Q,Q′}) ∪ {QxR,Q′yP}

is the desired extension of P, otherwise the extension is

Q := (Q′ \ {Q,Q′}) ∪ {QxP,Q′yR}.

A B′

x
yQ

Q′

Figure 1.11: Extending the paths Q,Q′ ∈ Q′ in the case y ∈ V (xP).

Either way, we have found an extension of P, which finishes the proof of (i)
and thus the proof of Theorem 1.7.

1.3 2-connected graphs

Let us look at the special case k = 2.

Proposition 1.8. Let G be a graph. Then the following statements are equiv-
alent.

(i) G is 2-connected;

(ii) |G| ≥ 2 and any two distinct vertices lie on a common cycle;

CHAPTER 1. CONNECTIVITY 22

(iii) G has no isolated vertices, ∥G∥ ≥ 2, and any two distinct edges lie on a
common cycle.

Proof. “(i) ⇒ (iii)”. If G is 2-connected, then it has at least three vertices,
none of which is isolated. In particular, G has at least two edges. Let uv
and xy be distinct edges and set A := {u, v} and B := {x, y}. As G is 2-
connected, the smallest A–B separator has size two and thus the set version
of Menger’s theorem implies that there are two disjoint A–B paths P and Q.
Then (P ∪Q) + uv + xy is the desired cycle.

“(iii) ⇒ (ii)”. |G| ≥ 2 follows from the fact that G has an edge. Since every
edge of G lies in a cycle, there are no vertices of degree one and thus every vertex
has degree at least two. For distinct vertices u, v, we can thus pick distinct edges
eu and ev incident with u and v, respectively. The cycle containing both eu and
ev that is provided by (iii) also contains both u and v.

“(ii) ⇒ (i)”. Any two vertices that lie on a common cycle are also linked
by two internally disjoint paths. Thus, (i) follows directly from (ii) and Theo-
rem 1.6.

2-connected graphs can also be characterised by the existence of a so-called
“ear-decomposition”.

Definition (Ear-decomposition). An ear-decomposition of a graph G is a se-
quence C,P1, . . . , Pk of subgraphs of G (k = 0 is allowed) such that

(i) C is a cycle;

(ii) each Pi is a (C ∪ P1 ∪ · · · ∪ Pi−1)-path;

(iii) G = C ∪ P1 ∪ · · · ∪ Pk.

The paths P1, . . . , Pk are called ears.

P3

C

P1

P2

P4

Figure 1.12: An ear-decomposition.

Proposition 1.9. A graph G is 2-connected if and only if it has an ear-
decomposition.

For the proof of Proposition 1.9, we need an auxiliary result.

Lemma 1.10. If H1, H2 are non-empty subgraphs of G, then

κ(H1 ∪H2) ≥ min{κ(H1), κ(H2), |H1 ∩H2|}.

CHAPTER 1. CONNECTIVITY 23

Proof. Denote the minimum of the three values on the right hand side by µ.
Clearly, H1 ∪ H2 has at least |H1| ≥ κ(H1) + 1 ≥ µ + 1 vertices. If we delete
less than µ vertices, then the remainders of both H1 and H2 will be connected
and have non-empty intersection, thus H1 ∪H2 remains connected.

Proof of Proposition 1.9. “⇐=”. Let C,P1, . . . , Pk be an ear-decomposition of
G. We prove by induction over k that G is 2-connected. This is trivial for
k = 0. Now suppose that k ≥ 1 and that every graph with an ear-decomposition
involving less than k paths is 2-connected. This means that in particular the
subgraph H := C ∪ P1 ∪ · · · ∪ Pk−1 of G is 2-connected. The path Pk has
two vertices u, v in H; let C ′ be the union of Pk and some u–v path in H.
Then G = H ∪ C ′ is 2-connected by Lemma 1.10, because both H and C ′ are
2-connected and their intersection contains at least two vertices (u and v).

u

v

H Pk

Figure 1.13: H and Pk intersect in two vertices, thus each component of Pk − v
meets H − v in at least one vertex.

“=⇒”. If G is 2-connected, then by Proposition 1.8, G contains a cycle
and thus in particular a subgraph that has an ear-decomposition. Let H be a
(containment-wise) largest such subgraph with ear-decomposition C,P1, . . . , Pk.
If there were a vertex v ∈ V (G) \ V (H), then apply the fan version of Menger’s
theorem (i.e. Theorem 1.7(iii)) to v and V (H) to find a v–V (H) fan consisting
of two paths. The union P of these paths is an H-path and thus H ∪ P has
an ear-decomposition (namely C,P1, . . . , Pk, P), a contradiction to the choice
of H. Thus, H spans G.

H v

Figure 1.14: Finding a larger subgraph with an ear-decomposition if H is not
spanning.

CHAPTER 1. CONNECTIVITY 24

But now every edge in E(G)\E(H) would be an H-path, again contradicting
the maximality of H. Therefore we have H = G, which means that G has an
ear-decomposition.

In a similar manner as the components of a graph decompose it into con-
nected subgraphs, one can define a decomposition into 2-connected subgraphs.

Definition (Cut vertex, bridge, block). A vertex v in a graph G is called cut
vertex if G−v has more components than G. In other words, v is a cut vertex if
it separates two of its neighbours. An edge e of G is called bridge if it separates
its end vertices. A block of G is a subgraph H of G that is maximal with the
property that it is connected and has no cut vertex.1

By the definition of 2-connectedness, we can characterise 2-connected graphs
via the non-existence of cut vertices.

Proposition 1.11. A connected graph with at least three vertices is 2-connected
if and only if it has no cut vertices.

What do the blocks of a graph G look like?

Remark. If a block B has at least three vertices, then it is 2-connected by
Proposition 1.11. By Proposition 1.8, such a block does not contain a bridge
of G, because a bridge is not contained in any cycle (why?). Vice versa, each
non-bridge lies in some cycle (why?) and thus in some 2-connected block. This
means that the blocks of G are

� the maximal 2-connected subgraphs of G,

� all bridges (including their end vertices) in G, and

� all isolated vertices of G.

We see that the blocks of G do not necessarily partition G. For instance, a
tree has a block for each of its edges (because each edge is a bridge) and thus
some vertices will lie in several blocks. But we shall see that the blocks partition
the edge set of G.

Lemma 1.12. Let G be a graph.

(i) Any two distinct blocks of G intersect in at most one vertex.

(ii) Each vertex of G lies in at least one block and each edge lies in precisely
one block.

(iii) Two edges lie in the same block if and only if they lie on a common cycle.

(iv) A vertex lies in more than one block if and only if it is a cut vertex.

Proof. (i) Suppose, for contradiction, that there are distinct blocks B1 ̸= B2

which intersect in (at least) two vertices u, v. Since both B1 and B2

contain two vertices, they are not isolated vertices, and if B1 were a single
edge then B1 ⊊ B2, contradicting either the maximality of the blocks as
subgraphs. A similar argument holds for B2, and hence we may assume
that B1 and B2 are 2-connected. But then B1 ∪ B2 is 2-connected by
Lemma 1.10, contradicting the maximality of B1 and B2.

1The graph H has no cut vertex, but it may contain vertices that are cut vertices of G.

CHAPTER 1. CONNECTIVITY 25

(ii) Each vertex/edge of G forms a connected subgraph without a cut vertex
and thus is contained in some block. By (i), blocks are edge-disjoint.

(iii) If two edges e1, e2 lie on a common cycle C, then C is 2-connected and
thus contained in a block B, which in turn contains e1 and e2.

Vice versa, if e1 ̸= e2 lie in the same block B, then B has at least three
vertices and thus is 2-connected. By Proposition 1.8, e1 and e2 lie on a
common cycle in B, and so in particular in G.

(iv) Suppose that v lies in the intersection of two distinct blocks B1, B2. Since
neither block is a subset of the other, neither of the two blocks is an isolated
vertex. Let u1 and u2 be neighbours of v in B1 and in B2, respectively. If
there exists a u1–u2 path in G−v, then v, u1, u2 lie on a common cycle C.
Since C is a connected graph without a cut vertex it is contained in some
block B3. However, since u1v ∈ B1 ∩B3 it follows from (ii) that B1 = B3,
and similarly since u2v ∈ B2 ∩ B3 it follows that B2 = B3, contradicting
the distinctness of B1 and B2. Thus, there is no u1–u2 path in G − v,
meaning that v is a u1–u2 separator and thus in particular a cut vertex.

vu1 u2

B1 B2

C

Figure 1.15: Finding a cycle C if v is not a u1–u2 separator.

Vice versa, suppose that v is a cut vertex and let u1, u2 be two of its
neighbours that are separated by v. Let B1 and B2 be the blocks that
contain the edges vu1 and vu2, respectively. We have B1 ̸= B2, because
otherwise this block would have to be 2-connected, which is not possible,
as v separates u1 and u2. Thus, v lies in at least two blocks.

Definition (Block-cut-vertex-graph). Given a graph G, let B and C be the sets
of its blocks and its cut vertices, respectively. The block-cut-vertex-graph is the
graph bc(G) with vertex set B ∪ C and edge set

{Bc : B ∈ B, c ∈ C, and c ∈ V (B)}.

Proposition 1.13. Let G be a graph.

(i) bc(G) is a forest.

(ii) bc(G) is a tree if and only if G is connected.

Proof. (i) Clearly, bc(G) is bipartite with sides B and C, hence any cycle
would alternately consist of blocks and cut vertices. Thus, a shortest
cycle in bc(G) would have the form Cbc = c1B1c2B2 . . . ckBkc1. Since
the vertices in Cbc are distinct, and distinct blocks share at most one

CHAPTER 1. CONNECTIVITY 26

Figure 1.16: A connected graph and its block-cut-vertex-graph. Blocks are
marked in gray, while cut vertices are drawn red.

vertex, it follows that Bi ∩ Bj = ci if j = i − 1 mod k. Suppose for a
contradiction that Bi ∩Bj contains a vertex for some 1 ≤ i < j ≤ k with
i−j ̸≡ ±1 mod k. In this case it is clear that vBici+1Bi+1 . . . cjBjv would
be a cycle in bc(G) shorter than Cbc, a contradiction.

For each 1 ≤ i ≤ k, let Pi be a ci–ci+1 path in Bi (where we write
ck+1 := c1). Then, by the above, P1, . . . , Pk are internally disjoint and
thus C := P1 ∪ · · · ∪ Pk is a cycle in G through c1, . . . , ck. But then
C ∪ B1 ∪ · · · ∪ Bk would be 2-connected by Lemma 1.10, a contradiction
to the maximality of the Bi’s. Therefore, bc(G) is cycle-free, i.e. a forest.

c1

c2c3

c4

c5 c6

B1

B2

B3

B4

B5

B6

Figure 1.17: How a cycle in bc(G) gives rise to a cycle in G.

(ii) By (i), we only need to prove that bc(G) is connected if and only if G is
connected.

Suppose that bc(G) is connected and let u, v ∈ V (G). By Lemma 1.12
(ii) there are blocks Bu ∋ u and Bv ∋ v. Since bc(G) is connected there
is some path B1v1B2v2 . . . vk−1Bk in bc(G) with B1 = Bu and Bk = Bv,
where this path may be a single vertex if Bu = Bv. For each 2 ≤ i ≤ k,
since Bi is connected, there is a vi−1 − vi path Pi in Bi and there is an

u−v1 path Pu in Bu and a vk−v path Pv in Bu. Then
⋃k

i=2 Pi∪Pu∪Pv is
a connected subgraph of G which contains u and v, and hence G contains
a u− v path. It follows that G is connected.

Conversely, suppose that G is connected. If G contains no cut-vertices,
then it has a unique block, and so bc(G) is trivially connected, or both

CHAPTER 1. CONNECTIVITY 27

or both B and C are non-empty. In which case, for any block B and cut-
vertex c, since G is connected, there is a path P in G from c to B. If
we let c = c1, c2, . . . , ck be the cut-vertices in P in order, and Bi be the
blocks in which the paths ciPci+1 are contained in (Exercise: Show any
path with doesn’t contain any cut-vertices in contained in a block). Note
that, in this case, ckP ⊆ B. It is clear then that cB1c2B2 . . . Bk−1ckB is
an c−B path in bc(G). Since each vertex in C is connected to each vertex
in B, and both are non-empty, it follows that bc(G) is connected.

An obvious question is whether it is possible to determine the blocks of a
graph algorithmically, preferably with low running time. To answer this ques-
tion, let us take a look at depth first search again.

Definition (Edges queried by DFS). Run the DFS algorithm for a graph G.
This produces a spanning tree for every component of G; let T be their union.

(i) An edge of T is called tree edge.

(ii) Let e = uv be an edge of G. At some point in the algorithm, the FOR-loop
of DFS(G,u) is run with argument v. We say that e is queried from u at
that time. Analogously, we define the time when e is queried from v.

(iii) An edge is called forwards edge if it queried first from its end vertex with
smaller value of DFSnum[·], otherwise we call it backwards edge.

Lemma 1.14. The non-tree edges are precisely the backwards edges.

Proof. Let e = uv be a non-tree edge and suppose that e is queried first from
v. When e is queried from v, we have known[u] = TRUE, because otherwise e
would have become a tree edge at that time, and hence DFS(G, u) has already
started. However, since e has not been queried from u, DFS(G, u) has not
finished, and hence DFS(G, v) was called as a subroutine whilst DFS(G, u) was
running. It follows that DFSnum[u] < DFSnum[v].

Conversely, if e = uv = parent[v]v is a tree edge then e is queried at u at
the point when parent[v] = u is set, and immediately after that DFS(G, v) is
started. Hence e is queried first from u, and clearly

DFSnum[u] < DFSnum[parent[v]] = DFSnum[v].

Lemma 1.14 shows that the DFS algorithm partitions E(G) into the set ET

of tree edges and the set EB of backwards edges.

Definition (Ancestors, descendants). Direct each edge of G as e = (u, v), where
u is the vertex from which e is queried first.

For vertices v, w of G, we say that v is an ancestor of w if v ̸= w and the
unique v–w path in T is directed from v to w. We call v a descendant of w if
v = w or w is an ancestor of v.

By Tv we denote the graph that T induces on the set of descendants of v.
By definition, all vertices of Tv are connected to v by a path in Tv, hence Tv is
connected and thus, being a subgraph of T , a tree.

CHAPTER 1. CONNECTIVITY 28

w

v

Tv

Figure 1.18: A DFS tree with directed edges. The vertex v is a descendant of w
and, vice versa, w is an ancestor of v. Each vertex is also a descendant of itself.

Corollary 1.15. For every non-tree edge (u, v), v is an ancestor of u.

Proof. Since (u, v) is a non-tree edge and e = uv was queried first from u,
by Lemma 1.14 DFSnum[u] > DFSnum[v]. Hence, by Proposition 1.4(iii) the
unique u − v path in T is given by u,parent[u],parent[parent[u]], In par-
ticular, since all tree edges are oriented as (parent[x], x), it follows that u is a
descendent of v, and so v is an ancestor of u.

When is a vertex a cut vertex? Suppose that u = parent[v]. If there are no
backwards edges from Tv to G−Tv−u, then u separates V (Tv) and V (G−Tv−u)
and thus u is a cut vertex (unless G− Tv − u is empty).

Definition (Low point). For each vertex v ∈ V (G), we define the low point of
v as

LowPoint[v] := min
{
{DFSnum[v]} ∪ {DFSnum[y] : ∃x ∈ V (Tv) : (x, y) ∈ EB}

}
.

In other words, the low point of v is the smallest DFSnum one can reach from
v by following the edges of G according to their directions, while using at most
one backwards edge.

If we want to determine all low points in G efficiently, we can make use of
the observation that each backwards edge (x, y) with x ∈ V (Tv) is either of the
type (v, y) or satisfies x ∈ V (Tw) with w a child of v (that is, v = parent[w]).

Remark. For every v ∈ V (G), we have

LowPoint[v] = min
{
{DFSnum[v]} ∪ {DFSnum[y] : (v, y) ∈ EB}

∪ {LowPoint[w] : (v, w) ∈ ET }
}
.

Let us now modify the DFS algorithm so that it also determines tree edges,
backwards edges, and low points.

CHAPTER 1. CONNECTIVITY 29

PROCEDURE DFSb(G,u)
BEGIN

t := t+ 1;
DFSnum[u] := t;
LowPoint[u] := DFSnum[u];
For (v ∈ N(u)){

IF (known[v] = FALSE){
known[v] := TRUE;
parent[v] := u;
ET := ET ∪ {(u, v)};
DFSb(G,v);
LowPoint[u] := min{LowPoint[u],LowPoint[v]};

}
ELSE IF (v ̸= parent[u]){

EB := EB ∪ {(u, v)};
LowPoint[u] := min{LowPoint[u],DFSnum[v]};

}
}

END

The main program has to be changed accordingly so as to set the initial
values EB = ET = ∅ (and to run DFSb instead of DFS). Observe that the
running time still has the same order as before.

Definition (Leading edge). An edge (v, w) ∈ ET is called leading edge if
LowPoint[w] ≥ DFSnum[v]. This is the case if and only if every backwards
edge that starts in Tw ends either in Tw or in v.

Lemma 1.16. Let H be a component of G and denote the root of T [V (H)] by
s. Let v ∈ V (H) \ {s}, u := parent[v], and (v, w) ∈ E(H). Then the following
statements are equivalent.

(i) uv and vw lie in the same block of G.

(ii) (v, w) is not a leading edge.

Proof. “(i) ⇒ (ii)”. If uv and vw lie in the same block, then they lie on a
common cycle C by Lemma 1.12(iii). Now either (v, w) is a backwards edge
(and thus in particular not a leading edge) or C contains an edge from Tw to
G− Tw − v, which means that (v, w) is not a leading edge.

“(ii) ⇒ (i)”. Suppose that (v, w) is not a leading edge. If it is a backwards
edge, then w is an ancestor of u and thus the unique w–u path in T , together
with the edges uv and vw, forms a cycle containing both uv and vw. If (v, w) is
a tree edge, then the fact that (v, w) is not a leading edge implies that there is
a descendant x of w and an ancestor z of v such that (x, z) is a backwards edge.
Now the union of xz and the unique z–x path in T is a cycle that contains both
uv and vw.

Either way, uv and vw lie on a common cycle and thus in the same block by
Lemma 1.12(iii).

The following lemma shows that leading edges can be used to identify cut
vertices.

Lemma 1.17. For a component H of G, let s be the root of T [V (H)].

CHAPTER 1. CONNECTIVITY 30

u

v

w

u

v

w

x

z

Figure 1.19: Finding a cycle that contains both uv and vw when (v, w) is not a
leading edge.

(i) All tree edges incident with s are leading edges, and s is a cut vertex if
and only if it is incident with at least two tree edges.

(ii) A vertex v ∈ V (H) \ {s} is a cut vertex if and only if there is at least one
leading edge (v, w).

Proof. (i) The first part of the statement follows directly from the definitions
and the trivial fact that s has the smallest value of DFSnum in H. If
the tree edges incident with s are (s, w1), . . . , (s, wk) (possibly k = 0),
then T [V (H)] − s consists of the components Tw1

, . . . , Twk
. By Proposi-

tion 1.4(iii), there are no edges of G between Twi
and Twj

for i ̸= j and
thus, H − s decomposes into components H[V (Tw1

)], . . . ,H[V (Twk
)]. In

particular, s is a cut vertex if and only if k ≥ 2.

(ii) If (v, w) is a leading edge, then Lemma 1.16 implies that v lies in (at least)
two blocks and thus is a cut vertex by Lemma 1.12(iv). For the reverse
direction, suppose there is no such leading edge. Again by Lemma 1.16,
each edge (v, x) of H lies in the same block as (u, v), where u is the parent
of v. Furthermore, for each edge (y, v) with y ̸= u, we have y ∈ V (Tw) for
some child w of v, which implies that yv and vw lie on a common cycle
and thus in the same block by Lemma 1.12(iii). In other words, all edges
incident with v lie in the same block. Hence v lies in only one block and
thus, again by Lemma 1.12(iv), v is not a cut vertex.

We can now use the information gathered so far to describe a linear-time
algorithm that finds all blocks and cut vertices.

Theorem 1.18 (Tarjan 1972). There is an algorithm that determines the blocks
and cut vertices of a graph G in linear time Θ(n+m).

Proof. Run the DFSb algorithm (this takes time Θ(n+m)). For roots of span-
ning trees of components of G, check which are cut vertices by Lemma 1.17(i)
(time O(n)). Then, for each non-root vertex v, compare LowPoint[v] with
DFSnum[parent[v]] (time O(n)) to identify the leading edges and remaining
cut vertices (by Lemma 1.17(ii)).

CHAPTER 1. CONNECTIVITY 31

u

v

x

u

v

w

y

Figure 1.20: If there is no leading edge starting at v, then all edges of type (v, x)
lie in the same block as the tree edge (u, v). All edges of type (y, v) lie in the
same block as some tree edge (v, w), and thus also in the same block as (u, v).

It remains to determine the blocks. Consider the cut vertex v with the largest
value DFSnum[v]. Let (v, w) be a leading edge, then there is no edge from Tw

to G − Tw − v. Furthermore, G[V (Tw) ∪ {v}] has no cut vertex (because of
the maximality of DFSnum[v] among cut vertices) and thus is a block. Repeat
this step for all leading edges (v, w). If v is the root of its component H,
we have found all blocks of H and thus we can continue the procedure for
G−H. Otherwise, delete each Tw as above from G and observe that v is then
no longer a cut vertex. Now continue with the next cut vertex. Once there are
no cut vertices left, the remaining graph consists only of components without
cut vertices, all of which are therefore blocks. Again, we have running time
O(n).

1.4 Edge-connectivity

Definition (k-edge-connectedness, edge-connectivity). Let k ∈ N. A graph G
with at least two vertices is called k-edge-connected if, for every set F ⊂ E(G)
with |F | < k, the graph G− F is connected.

We define the edge-connectivity of G as

λ(G) := max{k ∈ N : G is k-edge-connected}.

Proposition 1.19. For every graph G with at least two vertices, we have

κ(G) ≤ λ(G) ≤ δ(G).

Proof. Exercise.

The bounds κ(G) and δ(G) can be arbitrarily far apart and λ(G) can lie at
either end of this spectrum.

Theorem 1.20 (Edge version of Menger). For disjoint sets A,B of vertices in
a graph G, the largest number of edge-disjoint A–B paths equals the smallest
size of an edge set separating A and B.

CHAPTER 1. CONNECTIVITY 32

Kk+1 Kk+1 Kk+1 Kk+1

Figure 1.21: Two graphs with minimum degree k and connectivity 1. The
graph on the left has edge-connectivity k, while the one on the right has edge-
connectivity 1.

Proof. Exercise.

Corollary 1.21. For every k ∈ N, a graph G with at least two vertices is k-
connected if and only if any two distinct vertices are linked by k edge-disjoint
paths.

Definition (Edge-ear-decomposition). An edge-ear-decomposition of a graph G
is a sequence (C,H1, . . . ,Hk) of subgraphs of G (k = 0 is allowed) such that

(i) C is a cycle;

(ii) each Hi is either a (C ∪ H1 ∪ · · · ∪ Hi−1)-path or a cycle that meets
C ∪H1 ∪ · · · ∪Hi−1 in precisely one vertex;

(iii) G = C ∪H1 ∪ · · · ∪Hk.

Proposition 1.22. A graph is 2-edge-connected if and only if it has an edge-
ear-decomposition.

Proof. Imitate the proof of Proposition 1.9.

Chapter 2

Matchings

Definition (Matchings). An independent set M of edges of a graph G is called
matching (or 1-factor). If uv lies in a matching M , we say that u is matched to
v (and vice versa). In this case, we also say that u and v are covered by M . A
matching is perfect if it covers all vertices of G. It is almost perfect if precisely
one vertex is not covered.

2.1 Matchings in bipartite graphs

Definition (Vertex cover). A vertex cover in a graph G is a set U of vertices
such that each edge of G has an end vertex in U .

In a bipartite graph with sides A and B, matchings are precisely the sets of
disjoint A–B paths, while vertex covers are the same as A–B separators. Thus,
we have the following special case of Menger’s theorem (which was originally
proved independently by other methods).

Theorem 2.1 (König 1931). The largest size of a matching in a bipartite graph
G equals the smallest size of a vertex cover.

Theorem 2.2 (Hall 1935; “Marriage theorem”). A bipartite graph G contains
a matching that covers all of A if and only if

|N(S)| ≥ |S|

holds for each S ⊆ A.1

Proof. The marriage condition is obviously necessary. Vice versa, suppose that
the marriage condition holds and let U be a vertex cover of smallest size. By
König’s theorem, |U | equals the size of a largest matching. We thus need to
show that |U | = |A|. Every neighbour of a vertex in A\U lies in B∩U , because
G is bipartite and U is a vertex cover. In particular, |N(A \ U)| ≤ |B ∩ U |. By
the marriage condition, applied to the set A \ U , we have

|A| = |A ∩ U |+ |A \ U | ≤ |A ∩ U |+ |N(A \ U)| ≤ |A ∩ U |+ |B ∩ U | = |U | .

On the other hand, A is a vertex cover and hence |A| ≥ |U | by the minimality
of U . Thus, |U | = |A|, as desired.

1This is also called the marriage condition.

33

CHAPTER 2. MATCHINGS 34

An alternative proof of Hall’s theorem is more constructive and can be used
to find a largest matching algorithmically.

Definition (Alternating path). Given a matching M in a bipartite graph G,
a path in G is called alternating if it starts at an unmatched vertex in A and
alternately used edges from E(G) \M and M . An alternating path P is aug-
menting if it ends in an unmatched vertex in B. In that case, the symmetric
difference M△P is a matching with |M |+ 1 edges.

a1

a2

a3

a4

b1

b2

b3

M

P a1

a2

a3

a4

b1

b2

b3

M△P

Q

Figure 2.1: Augmenting and alternating paths in a bipartite graph. On the left,
we have a matching M (red) and an augmenting path P (bold black) from a3
to b1. On the right, we have the matching M△P and a maximal alternating
path Q (bold black), which is not augmenting.

Second proof of Theorem 2.2. Suppose that M is a matching consisting of less
than |A| edges; we shall prove that there is an augmenting path. Let A′ and
B′ denote the sets of vertices in A and B, respectively, that lie on alternating
paths. We have N(A′) ⊆ B′, since for ab ∈ E(G) with a ∈ A′, the alternating
path ending in a either already contains b or can be extended to an alternating
path by adding the edge ab. The marriage condition thus yields |B′| ≥ |A′|.

For each ab ∈ M , either both vertices lie on an alternating path or neither
of them do. Indeed, if an alternating path contains a, then a cannot be the
first vertex in the path, and so the edge ab is in the path. Conversely, if an
alternating path contains b and the path doesn’t contain a, then b must be the
final vertex on the path, and we can add the edge ab to form a longer alternating
path.

Thus, there are the same number of matched vertices in A′ as there are
in B′, and so since |B′| ≥ |A′|, it follows that B′ contains at least as many
unmatched vertices as A′ does. But A′ contains all |A| − |M | ≥ 1 unmatched
vertices in A, because each such vertex forms an alternating path of length zero.
Therefore, B′ contains some unmatched vertex, which means that there exists
an augmenting path.

Proposition 2.3. If M is a matching in a bipartite graph G that does not have
largest size, then there is an augmenting path.

Proof. Let M ′ be a matching with |M ′| > |M |, where we may assume that M
and M ′ are disjoint, otherwise we consider the graph G − V (M ∩ M ′) where
M ′ \ M is a larger matching that M \ M ′. Let AM ′ and AM be the sets of
vertices in A that are covered by M ′ and M , respectively. Consider the graph

CHAPTER 2. MATCHINGS 35

H := (V (G),M ∪ M ′) formed by the union of the two matchings. Since M
and M ′ have maximum degree one, every component in H is a path or cycle,
with edges alternating between M and M ′. In particular, any component of
H := (V (G),M ∪M ′) that contains a vertex in AM ′ \AM is an alternating path
P with respect to M . If P ends in a vertex b ∈ B, then b is isolated in M and
P is augmenting. Hence, if P is not augmenting, then it has even length and so
ends in a vertex in AM \AM ′ .

Since |M ′| > |M | it follows that |AM ′ | > |AM | and so |AM ′ \AM | >
|AM \AM ′ |. In particular, since each component contains at most one ver-
tex of AM ′ \ AM , there must be some component which contains a vertex of
AM ′ \AM and no vertex of AM \AM ′ , and hence is an augmenting path.

We can utilise Proposition 2.3 to create an algorithm that finds a largest
matching by starting with an empty matching and then recursively increasing
the current matching M via an augmenting path, which we find as follows. Sup-
pose that M covers the vertices in AM ⊆ A and in BM ⊆ B. In order to either
find an augmenting path or prove that none exist, we use a modified BFS that
starts with a queue Q listing all vertices in A \ AM . The BFS then alternately
uses non-matching edges and matching edges and stops once unmatched vertices
in B are found or the whole graph has been discovered.

For b ∈ BM , we denote by a[b] the vertex in AM that b is matched to. Any
unmatched vertices in B found by the algorithm will be collected in a set B′.

PROCEDURE BFSm(G,Q)
BEGIN

B′ := ∅;
WHILE (B′ = ∅ AND Q ̸= ∅){

v := First(Q);
IF (v ∈ A){

FOR (w ∈ N(v)){
IF (known[w] = FALSE){

known[w] := TRUE;
parent[w] := v;
Concatenate (Q,w);
IF (w /∈ BM) THEN B′ := B′ ∪ {w};

}
}

}
ELSE{

known[a[v]] := TRUE;
parent[a[v]] := v;
Concatenate (Q,a[v]);

}
Remove v from Q;

}
END

Observe that if the vertex v considered in the WHILE-loop lies in A, then
BFSm discovers all neighbours of v that have not been discovered before. If
this includes unmatched vertices, the WHILE-loop will stop after it is finished
dealing with v. Thus, a vertex in B will only be considered as v if it is matched.
In that case, the algorithm will add the vertex a[v] next.

CHAPTER 2. MATCHINGS 36

If BFSm finds no unmatched vertices in B (i.e. B′ = ∅), then there are no
augmenting paths with respect to M (exercise). Vice versa, if we have found
some b ∈ B′, then the path consisting of b, its parent, the parent of its parent,
and so on, is an augmenting path (in reverse direction).

parent[b1] = a1

a2

parent[b2] = a3

b1

b2 = parent[a1]

b3

M

P

Figure 2.2: The augmenting path P belonging to the unmatched (in M) vertex
b1 found by BFSm.

The following procedure determines the symmetric difference of M and this
augmenting path ending in b.

PROCEDURE AUGMENT(BM ,a[·],b)
BEGIN

BM := BM ∪ {b};
a[b] := parent[b];
WHILE (a[b] ∈ AM){

b := parent[a[b]];
a[b] := parent[b];

}
AM := AM ∪ {a[b]};

END

The main program sets the initial values and recursively increases the match-
ing until we have found a largest matching.

BEGIN
AM , BM := ∅;
Queue Q;
augm := TRUE;
WHILE (augm = TRUE){

FOR (v ∈ AM ∪B) DO known[v] := FALSE;
Q := ∅;
FOR (v ∈ A \AM){

known[v] := TRUE;
Concatenate (Q,v);

}
BFSm(G,Q);
IF (B′ ̸= ∅){

Pick b ∈ B′;
AUGMENT(BM ,a[·],b);

}
ELSE augm := FALSE;

}
END

CHAPTER 2. MATCHINGS 37

Hopcroft-Karp algorithm. The above algorithm is reasonably fast (exer-
cise), but not as fast as possible. We give a sketch of a faster algorithm found
by Hopcroft and Karp in 1973. Again, start with M = ∅.

(i) When BFS encounters the first unmatched vertex in B, the algorithm
finishes to fill the current layer (unlike BFSm, which only finished dealing
with the current vertex). This way, several unmatched vertices in B are
found, let B′ be their set.

(ii) Instead of taking a single augmenting path, the algorithm finds a maximal
set (maximal with respect to inclusion, not necessarily of maximum size!)
of disjoint augmenting paths by applying a DFS to the vertices in B′ going
backwards through the layers. Observe that in our algorithm above, we
used a fixed augmenting path for each vertex in B′; using DFS instead
allows for other augmenting paths that we would not be able to use.

(iii) Take the symmetric difference of M and these augmenting paths.

(iv) Repeat.

It is known (but not obvious) that under the assumption m ≥ n, the algorithm
needs only O(

√
n) rounds, each of which takes time O(m). We thus have total

running time O(
√
nm).

2.2 Stable matchings

In many applications, every vertex in the graph comes with a list of preferences
for its neighbours and the goal is to match every vertex to a neighbour that is
as high as possible on its list.

Definition (Stable matching). Let G be a graph and suppose that each vertex
v ∈ V (G) has a total order ≤v on the set N(v) of its neighbours. For neighbours
u,w of v, we say that v prefers u over w if u <v w (i.e. “smaller means better”).

We call a matching M in G stable if there is no edge ab ∈ E(G) \M such
that both a and b are either unmatched or prefer each other over the vertex
they are matched to in M .2

Observe that every stable matching M is maximal with respect to inclusion,
because ifM ′ ⊋ M is a matching, then any edge inM ′\M is a witness forM not
being stable. However, stable matchings are not necessarily largest matchings.

Moreover, it is easy to construct graphs (together with lists of preferences)
that do not have stable matchings at all.

Again, the situation becomes easier if we consider bipartite graphs.

Theorem 2.4. Every bipartite graph with preferences has a stable matching.

In order to prove Theorem 2.4, let us construct an algorithm that finds a
stable matching in any given bipartite graph G. We are going to use a system
of “proposing” and “rejecting”. In the beginning, each vertex a ∈ A would

2The idea behind this notation is that if M is not stable and ab is an edge witnessing this
fact, then a and b would “break up” with their respective partners and rather create a new
edge together.

CHAPTER 2. MATCHINGS 38

b2 <a1
b1 a1

b1 <a2
b3 <a2

b2 a2

b3 <a3
b2 a3

b2 <a4
b3 a4

b1 a1 <b1 a2

b2 a2 <b2 a3 <b2 a4 <b2 a1

b3 a2 <b3 a4 <b3 a3

M

Figure 2.3: Stable and non-stable matchings in a bipartite graph with prefer-
ences. The matching M (red) is not stable, as witnessed by the edge a3b2. The
matching (M \ {a4b2}) ∪ {a3b2} is stable (check!).

a1

b1 <a2
b2 a2

b1 a2 <b1 a1

b2

Figure 2.4: A bipartite graph in which the unique largest matching {a1b1, a2b2}
is not stable. The only stable matching in this graph is {a2b1}.

x

y <x z

z <y x y z x <z y

Figure 2.5: A graph with no stable matching.

CHAPTER 2. MATCHINGS 39

prefer to be matched to its neighbour that comes first in the order <a, so let
each a ∈ A propose to that neighbour. If each vertex in B receives at most one
proposal, then we could match each vertex in A to its preferred partner and
obtain a matching that would automatically be stable, because no vertex in A
would prefer to “break up” with its partner.

Otherwise, if b ∈ B receives more than one proposal, then it will prefer the
one among the proposing vertices that comes earliest in the order <b, so let
b reject all other proposals. Then all vertices in A make new proposals (the
ones that were rejected propose to the next best neighbour on their list, the
others propose to the same neighbour as in the previous step), the vertices in B
reject some of them and so on. Observe that a proposal from a to b that is not
rejected in the first round, say, might be rejected in the second round, because
some vertex a′ <b a might now propose to b. If no proposal is rejected in some
round, we take the currently open proposals as our matching. (Observe that it
is not immediate that this is a stable matching.)

Let us formalise this algorithm. For the sake of notation, suppose that the
preferences are encoded by a queue N [v] for each vertex v, with the entry ∅
being the last element (i.e. each vertex prefers any possible partner over not
being matched at all).

PROCEDURE STABLE(G)
BEGIN

FOR (b ∈ B) DO proposal[b] := ∅;
reject := TRUE;
WHILE (reject = TRUE){

reject := FALSE;
FOR (a ∈ A) DO PROPOSE(G,a);

}
END

PROCEDURE PROPOSE(G,a)
BEGIN

b := First(N [a]);
IF (b ̸= ∅){

IF (a <b proposal[b]){
IF (proposal[b] ̸= ∅){

Remove b from N [proposal[b]];
reject := TRUE;

}
proposal[b] := a;

}
ELSE IF (a >b proposal[b]){

Remove b from N [a];
reject:= TRUE;

}
}

END

Note that in terms of the output, it does not matter whether the algorithm
first gathers all proposals from vertices in A and then proceeds with rejecting
some of them, or (like STABLE does) immediately rejects any proposal that is
currently not the favourite choice for the vertex being proposed to.

CHAPTER 2. MATCHINGS 40

Proposition 2.5. For every bipartite graph G with preferences, the set

M :=
{
{b,proposal[b]} : b ∈ B with proposal[b] ̸= ∅

}
produced by STABLE(G) is a stable matching.

Proof. By construction, no vertex in B is incident with more than one edge of
M . At every time of the algorithm, every vertex a ∈ A has at most one open
proposal (that is, there is at most one b ∈ B with a = proposal[b]). Thus, M is
a matching.

Let ab ∈ E(G) \M . If a never proposed to b, then some proposal of a to a
vertex b′ <a b was never rejected and thus ab′ ∈ M . If a proposed to b at some
point, then this proposal was eventually rejected and thus a′b ∈ M for some
vertex a′ <b a. As this holds for all choices of ab, M is stable.

Proposition 2.5 in particular implies Theorem 2.4.

Remark. Every vertex b ∈ B rejects at most d(b)− 1 proposals. By construc-
tion, the WHILE-loop in STABLE stops after the first time that one of its runs
features no rejection. Thus, the loop runs at most

1 +
∑
b∈B

(d(b)− 1) = m− |B|+ 1

times and each run takes time Θ(|A|). Thus, we have a total running time of

O
(
|A|
(
m− |B|+ 1

)
+ |B|

)
.

(Setting of the initial conditions takes time Θ(|B|).)

We now know that stable matchings always exist in bipartite graphs. But
what can we say about their structure? Let us compare two stable matchings.

Proposition 2.6. Let M,M ′ be stable matchings in a bipartite graph G. Then
the components of the graph H := (V (G),M ∪M ′) are

� vertices unmatched in both M and M ′,

� edges from M ∩M ′ (plus their end vertices), and

� even cycles consisting alternately of edges from M and M ′ such that each
vertex in the cycle prefers its successor in the cycle over its predecessor.

Proof. Each vertex in H has degree at most two, hence its components are paths
(possibly of length zero) and cycles. Let C be any component of H.

If C is a path of length zero, then its vertex is unmatched in both M and
M ′. If C is a path of length one, then its edge e lies in one of the matchings, say
in M . Since e forms a component of H, either e ∈ M ′ or both its end vertices
are unmatched in M ′. But the latter would be a contradiction to M ′ being
stable, which means that e ∈ M ∩M ′.

Suppose that C is a path v0 . . . vk of length at least two and that v0v1 ∈ M .
This means that v1v2 ∈ M ′, v2v3 ∈ M , and so on, becauseM,M ′ are matchings.
Every vi with 1 ≤ i ≤ k−1 either prefers vi−1 or vi+1 over the other. The vertex
v1 has to prefer v2, because otherwise M ′ would not be stable (as witnessed by

CHAPTER 2. MATCHINGS 41

v0v1). Let i ∈ {1, . . . , k − 1} be the largest index for which vi prefers vi+1 over
vi−1. Let M̃ ∈ {M,M ′} be the matching that does not contain e = vivi+1.
Then e shows that M̃ is not stable, because vi prefers vi+1 over vi−1 (to which
vi is matched in M̃), while vi+1 either is not matched in M̃ (if i = k − 1) or
it prefers vi over vi+2 (to which vi+1 is matched in M̃ if i < k − 1) by the
maximality of i. Since this is a contradiction, C cannot be a path of length at
least two.

v0 v1 v2 v3 v4
v2 <v1 v0 v1 <v2 v3 v2 <v3 v4

M M ′ M M ′

Figure 2.6: A path of length at least two consisting of edges from two matchings
M,M ′. The edge v1v2 shows that M is not stable.

Finally, suppose that C is a cycle. Then C has even length (because G is
bipartite) and consists alternately of edges from M and M ′ (because these are
matchings). Suppose that some vertices on C prefer their predecessor and some
other vertices prefer their successor. Then there would be consecutive vertices
u, v on the cycle such that u prefers v and vice versa. If uv ∈ M , then uv
is a witness that M ′ is not stable, a contradiction. Thus, we can choose the
direction of the cycle in such a way that each vertex prefers its successor.

As an immediate corollary, we deduce that all stable matchings in a bipartite
graph cover the same vertices, a result that looks rather surprising.

Corollary 2.7. If G is bipartite, then there exist sets A′ ⊆ A and B′ ⊆ B such
that every stable matching in G is a perfect matching of G[A′ ∪B′].

Remark. The stable matching M found by STABLE is best possible for each
vertex a ∈ A′ in the sense that if a is matched to b, then every other stable
matching matches a to some b′ with b ≤a b′ (exercise). For the vertices in B′,
however, M is worst possible in the same sense.

2.3 Matchings in general graphs

Suppose that a graph G has a perfect matching M , what can we say about the
structure of G? Arguably, the most obvious property of G is that it has an even
number of vertices. We also know that each component of G is even.

A slightly less obvious fact becomes apparent when we consider G − S for
some S ⊆ V (G). Clearly, M can contain at most |S| edges between S and
V (G − S). Thus, M induces on G − S a matching that covers all but at most
|S| vertices, which implies that G− S has at most |S| odd components.

Surprisingly, this condition is enough to guarantee a perfect matching.

Theorem 2.8 (Tutte 1947). A graph G has a perfect matching if and only if

∀S ⊆ V (G) : G− S has at most |S| odd components. (2.1)

We also call (2.1) the Tutte condition.
We shall prove Theorem 2.8 via a more general result by Gallai and Edmonds.

Before we do that, let us note that Tutte’s theorem yields a very short proof of
a result that was originally proved with significantly more effort.

CHAPTER 2. MATCHINGS 42

Theorem 2.9 (Petersen 1891). Every bridgeless cubic graph has a perfect
matching.

Proof. Let G be bridgeless and cubic and let S ⊆ V (G) be given. For any
U ⊆ V (G− S), denote by E(U, S) the set of edges between U and S. Let H be
a component of G− S. We have

3 |H| =
∑

v∈V (H)

dG(v) = 2 ∥H∥+ |E(V (H), S)| ,

because every edge of H is counted twice in the sum, while every edge between
V (H) and S is counted once. Thus, if H has an odd number of vertices, then
|E(V (H), S)| is odd as well. As G is bridgeless, this means that there are at
least three edges between V (H) and S. The total number of edges between S
and V (G) − S is bounded by 3 |S|. Therefore, there can be at most |S| many
odd components. Thus, G satisfies the Tutte condition and hence has a perfect
matching by Theorem 2.8.

If G has a perfect matching M and for some set S we have precisely |S| odd
components in G− S, then M has to contain, for each such odd component H,

� precisely one edge between S and V (H),

� an almost perfect matching of H.

Inspired by this observation, let us define the following notation.

Definition (Factor-critical graphs, matchable sets). Call a non-empty graph G
factor-critical if, for each v ∈ V (G), the graph G− v has a perfect matching.

Let a graph G and a set S ⊆ V (G) of vertices be given and suppose that
G− S has components H1, . . . ,Hk. We call S matchable to G− S if the graph
G′ := G/(V (H1), . . . , V (Hk))− E(G[S]) contains a matching covering all of S.

S

H1H2

H3

H4

G

S

H1H2

H3

H4

G′

Figure 2.7: How to construct the graph G′ from G. In this example, all compo-
nents of G− S are factor-critical and S is matchable to G− S (check!).

Clearly, factor-critical graphs are always odd. Observe that unless S = ∅
or S = V (G), the graph G′ is bipartite with sides S and {V (H1), . . . , V (Hk)}.
The set S = ∅ is always matchable to G− S.

Theorem 2.10 (Gallai-Edmonds 1964/65). Every graph G contains a vertex
set S such that

CHAPTER 2. MATCHINGS 43

(i) each component of G− S is factor-critical and

(ii) S is matchable to G− S.

If S is any such set, then G has a perfect matching if and only if G − S has
precisely |S| components.

Proof of Theorem 2.8 from Theorem 2.10. The Tutte condition is clearly neces-
sary for a perfect matching. Vice versa, suppose that the Tutte condition holds
and let S be the set provided by Theorem 2.10. Then G − S has at least |S|
components by (ii), and each component is odd by (i). Together with the Tutte
condition for the set S, this implies that G − S has precisely |S| components.
Thus, G has a perfect matching by the last statement of Theorem 2.10.

Observe that we have actually not only proved that Theorem 2.10 implies
Theorem 2.8, but the following stronger statement.

If the statement of Theorem 2.10 is true for a graph G, then the
statement of Theorem 2.8 also holds for G.

Proof of Theorem 2.10. We shall show the existence of S by induction on |G|.
For empty G, we can choose the empty set as S. For the induction step, suppose
that G is non-empty and that Theorem 2.10 (and thus also Theorem 2.8) is true
for all graphs on fewer vertices. For every graph H, denote by q(H) the number
of odd components of H.

For all vertex sets T ⊆ V (G), set

f(T) := q(G− T)− |T | .

In other words, f(T) ≤ 0 is equivalent to the Tutte condition for T , while
f(T) > 0 is a measure of how bad the Tutte condition fails for T . Among all
sets T with greatest value f(T), choose S to be a largest one. Then

f(S) ≥ f(∅) ≥ 0.

We will show that S has the desired properties.
To prove (i), suppose, for contraction, that for some vertex v in a component

H of G − S, the graph H − v has no perfect matching. As H − v is smaller
than G, we know that Theorem 2.8 holds for H−v by the induction hypothesis.
Thus, there is a set S′ ⊆ V (H − v) for which the Tutte condition fails, that is,
q(H − v − S′) ≥ |S′|+ 1. This means that

f(S ∪ {v} ∪ S′) = q(G− S − v − S′)− |S ∪ {v} ∪ S′|
=
(
q(G− S)− q(H) + q(H − v − S′)

)
−
(
|S|+ 1 + |S′|

)
= f(S) + q(H − v − S′)− |S′| −

{
2 if H is odd,

1 if H is even.

If H is even, recall that q(H − v−S′) ≥ |S′|+1, and so f(S ∪{v}∪S′) ≥ f(S),
contradicting our choice of S.

If H is odd, then

|H − v| = |H − v − S′|+ |S′|

CHAPTER 2. MATCHINGS 44

is even and thus |H − v − S′| and |S′| are either both even or both odd. Since
|H − v − S′| is even if and only if q(H − v − S′) is even, q(H − v − S′) and |S′|
have the same parity, implying that q(H − v − S′) ≥ |S′| + 2. Either way, we
have f(S ∪ {v} ∪ S′) ≥ f(S), contradicting the choice of S. This proves (i). In
particular, we may assume that every component of G−S is factor-critical, and
hence odd.

S

S′

v

H

Figure 2.8: If H − v does not have a perfect matching, we find a set S′ that
violates the Tutte condition in H. The odd components of G − (S ∪ {v} ∪ S′)
are precisely the odd components of G − S apart from H, if H is odd, (these
are q(G− S)− q(H) odd components) and the q(H − v − S′) odd components
of H − v − S′.

Now suppose, for contradiction, that (ii) fails. Then in particular S ̸= ∅. We
also have S ̸= V (G), because f(V (G)) = − |G| < 0 ≤ f(S). Thus, the graph G′

obtained from G by contracting all components of G− S and deleting all edges
in G[S] is bipartite with S being one side. Now the fact that (ii) fails implies by
Hall’s theorem (Theorem 2.2) that there is a set S′′ ⊆ S for which the marriage
condition in G′ fails, that is, S′′ sends edges to less than |S′′| components of
G − S. In particular, S′′ ̸= ∅. But then all components of G − S that do not
send an edge to S′′ are also components of G− (S \S′′), meaning that, since all
components of G− S are odd, q(G− (S \ S′′)) > q(G− S)− |S′′| and thus

f(S \ S′′) = q(G− (S \ S′′))− |S \ S′′| > q(G− S)− |S| = f(S),

a contradiction.
It remains to prove the last statement of Theorem 2.10. To that end, let S be

any set satisfying (i) and (ii). Then by (ii), G− S has at least |S| components,
all of which are odd by (i). If G−S has more than |S| (odd) components, then G
does not have a perfect matching by the trivial direction of Tutte’s theorem. If
G−S has precisely |S| components, take a matching that matches each vertex in
S to a vertex in a different component of G−S (such a matching exists by (ii)).
For each component of G− S, exactly one vertex is now matched and thus we
can find a perfect matching in the rest of the component by (i). Together, this
is a perfect matching of G.

Suppose that S is the set provided by Theorem 2.10 and denote again by
q(G−S) the number of odd components of G−S. Then by Theorem 2.10, there
is a matching that consists of |S| edges between S and distinct components of

CHAPTER 2. MATCHINGS 45

S
S′′

Figure 2.9: If S′′ is witnessing the fact that S is not matchable to G− S, then
the odd components of G− (S \ S′′) are at least the odd components of G− S
that have no neighbour in S′′. The components of G− (S \S′′) contained in S′′

and its neighbouring components of G− S (blue) might or might not be odd.

G−S and an almost perfect matching of each component of G−S, thus covering

2 |S|+ |G− S| − q(G− S)

vertices.

S

Figure 2.10: Each largest matching consists of |S| edges from S to distinct
components of G−S (blue) and an almost perfect matching in each component
of G− S (black).

If M is any matching, then it can cover at most |G− S| − q(G−S) vertices
by edges within G− S, and if it does cover this many vertices, then it induces
an almost perfect matching of each component of G−S. Furthermore, by edges
not in G−S, M can cover at most 2 |S| vertices, and equality holds if and only
if M matches each vertex in S to a vertex in G−S. We thus have the following
structural statement.

Corollary 2.11. Let G be a graph and S ⊆ V (G) be a set provided by Theo-
rem 2.10. Then every matching in G of largest size consists of |S| edges between
S and G− S and an almost perfect matching of each component of G− S.

Chapter 3

Planar graphs

In this chapter we shall frequently use seemingly obvious, but actually non-
trivial topological facts, such as the Jordan curve theorem that any simply closed
curve separates the plane into precisely two components. We will, however, point
out the places where we use such facts.

3.1 Basic properties of planar graphs

Definition (Plane and planar graphs, faces). A plane graph is a drawing of a
graph in the plane such that edges only intersect in their common end vertices
(if they have any in common). Formally,

� we assign to each vertex of the graph a different point in the plane;

� each edge is represented by a homeomorphic image of the unit interval
[0, 1] between its end vertices;

� edges meet if and only if they share an end vertex. In that case, they meet
only in said vertex.

A planar graph is a graph that has a drawing.
If G is a plane graph, then we call the components of R2 \G the faces of G.

The unique unbounded face is the outer face. Every face of G is an open set.
By the boundary of a face we mean the subgraph of G formed by the vertices
and edges that are contained in the (topological) closure of the face.

Clearly, planarity is closed under taking subgraphs. It is also easy to see
that a graph is planar if and only if its components are planar. Slightly less
obvious is that the same also holds for blocks instead of components.

Proposition 3.1. A graph is planar if and only if all its blocks are planar.

Proof. The “only if” direction is trivial. For the opposite direction, let G be a
graph all of whose blocks are planar. By the fact that the block-cut-vertex-graph
is a forest (Proposition 1.13), we can enumerate the blocks of G as B1, . . . , Bk

so that each Bi meets at most one vertex of B1 ∪ · · · ∪Bi−1. We shall construct
a a drawing of G by induction on k.

46

CHAPTER 3. PLANAR GRAPHS 47

For k ≤ 1, planarity of G is trivial. Assume that k ≥ 2 and that H :=
B1 ∪ · · · ∪ Bk−1 is planar. Fix a drawing of H. If Bk is disjoint from H, then
we can just pick a drawing of Bk and add it to the drawing of H in a disjoint
way. Otherwise, let v be the cut vertex in which Bk and H intersect and let F
be a face of H whose boundary contains v. Choose a drawing of Bk that has
v on the boundary of the outer face.1 This drawing of Bk can (with a little
stretching) be inserted into F so that the two appearances of v coincide. The
result is a drawing of G.

Proposition 3.2 (Euler’s formula). Every connected plane graph G has pre-
cisely

∥G∥ − |G|+ 2

faces. If G is not connected, it has more than ∥G∥ − |G|+ 2 faces.

A formal proof of Euler’s formula needs a couple of topological tools. The
basic proof idea is to use induction on ∥G∥− |G|, with the class of trees forming
the induction base. (Trees have |G| − 1 edges by Theorem 1.1 and a drawing of
a tree has only one face,2 hence they satisfy Euler’s formula.) For a connected
graph that is not a tree, we can delete an edge that does not disconnect the
graph (again by Theorem 1.1), thus decreasing the number of faces by one.3

Then we use the induction hypothesis on the smaller graph.

Proposition 3.3. Suppose that G is a planar graph which is not a forest. If G
contains no cycles of length shorter than r ≥ 3, then

∥G∥ ≤ r

r − 2
(|G| − 2).

In particular, every planar graph G on n ≥ 3 vertices has at most 3n− 6 edges.

Proof. Fix a drawing of G and let F be the set of faces of this drawing. For
each F ∈ F , denote by e(F) the number of edges on its boundary. Each such
boundary contains a cycle4 and thus e(F) ≥ r. Since each edge lies in at most
two face boundaries, we have

r |F| ≤
∑
F∈F

e(F) ≤ 2 ∥G∥ .

(In some situations, it is common that if an edge lies in only one face boundary,
then it is counted twice for that boundary, thus yielding an equality on the right
hand side above.) By Euler’s formula, this implies

2

r
∥G∥ ≥ |F| ≥ ∥G∥ − |G|+ 2 =⇒ ∥G∥ ≤ r

r − 2
(|G| − 2).

The last claim follows immediately by the trivial observation that no cycle
can have length shorter than three, and the fact that forests on n ≥ 3 vertices
have at most n− 1 < 3n− 6 edges by Theorem 1.1.

1This can for instance be achieved by starting with any drawing, transfer it to a drawing
on the sphere by applying stereographic projection (in the reverse direction), pick a point
p in a face whose boundary contains v, and then apply stereographic projection again with
projection point p.

2Which is non-trivial to prove rigorously, as it needs some kind of inverse Jordan curve
theorem.

3Which is also not trivial.
4Not trivial.

CHAPTER 3. PLANAR GRAPHS 48

Observe that the general upper bound in Proposition 3.3 also holds for
forests, as long as r ≤ 2n− 2.

Definition (Maximally plane/planar graphs, triangulations). We call a plane
graph maximally plane if we cannot add an edge without crossing an already
existing edge. A planar graph is maximally planar if adding an edge between
any two non-adjacent vertices results in a non-planar graph.

A triangulation is a plane graph in which all face boundaries are triangles.

Suppose that we draw a planar graph G and find that this drawing is max-
imally plane. Does this automatically tell us that G is maximally planar? Or
might there be a different drawing of G that is not maximally plane? The next
result tells us that the decision whether G is maximally planar does in fact not
depend on how we draw it.

Proposition 3.4. The following statements are equivalent for every plane graph
G on n ≥ 3 vertices.

(i) G is maximally planar;

(ii) G is maximally plane;

(iii) G is a triangulation;

(iv) ∥G∥ = 3n− 6.

Proof. Exercise.

3.2 Kuratowski’s theorem

Non-planarity of a graph is usually very hard to prove from scratch. In this
regard, Proposition 3.3 provides a helpful criterion. For instance, we know that
the complete graph K5 is not planar, because it has 10 > 9 = 3·5−6 edges. The
complete bipartite graph K3,3 is also not planar. To see this, observe that if a
graph G is bipartite, it does not contain any triangles and thus, Proposition 3.3
is applicable with r = 4, giving an upper bound of 2 |G| − 4 edges. But K3,3

has 9 > 8 = 2 · 6 − 4 edges.5 Observe that the bound 3n − 6 is not enough to
prove that K3,3 is not planar.

Notation. Let G,H be graphs. We write

� G = TH if G is a subdivision of H;

� TH ⊆ G if H is a topological minor of G;

� G = MH if H is obtained from G by contracting connected vertex sets;

� MH ⊆ G if H is a minor of G.

Remark. If G = TH, then also G = MH. This implies that if H is a topolog-
ical minor of G, then it is also a (regular) minor.

Moreover, if G is planar, then all its (topological) minors are also planar.
In particular, no planar graph can contain K5 or K3,3 as a (topological) minor.

5For both K5 and K3,3, showing non-planarity directly is also possible, but needs the same
type of topological statements like we used in our proof sketch of Euler’s formula.

CHAPTER 3. PLANAR GRAPHS 49

Surprisingly, this simple condition of not containing K5 and K3,3 as (topo-
logical) minors is also sufficient for planarity.

Theorem 3.5 (Kuratowski 1930). A graph is planar if and only if it contains
neither K5 nor K3,3 as a topological minor.

Theorem 3.6 (Wagner 1937). A graph is planar if and only if it contains
neither K5 nor K3,3 as a minor.

We first note that since every (topological) minor of a planar graph is pla-
nar, and we have already shown that K5 and K3,3 are non-planar, the forward
implication of both theorems is trivial.

Furthermore, it is clear that Kuratowski’s theorem implies Wagner’s theo-
rem. Indeed, ifG is planar, then by Kuratowski’s theorem we haveMK5,MK3,3 ̸⊆
G and so in particular TK5, TK3,3 ̸⊆ G.

In fact, we will show that it is also relatively easy to deduce Kuratowski’s
theorem from Wagner’s theorem, and hence the two theorems are equivalent.

In order to do so we will use the following useful lemma about the number
of leaves in a tree, whose proof is left as an exercise.

Lemma 3.7. Let T be a tree and let Vi = {x ∈ V (T) : d(x) = i} be the set of
vertices of degree i. Then

|V1| = 2 +
∑
i≥2

(i− 2)|Vi|.

Proof. Exercise.

Proposition 3.8. Theorems 3.5 and 3.6 are equivalent.

Proof. We have already seen that Kuratowski’s theorem implies Wagner’s the-
orem; it remains to show the reverse implication. To that end, it will suffice
to show that TK5, TK3,3 ̸⊆ G implies MK5,MK3,3 ̸⊆ G. We shall prove the
equivalent statement that each graph which contains an MK5 or an MK3,3 also
contains a TK5 or a TK3,3.

Suppose first thatMK3,3 ⊆ G. LetH ⊆ G be minimal withH = MK3,3 and
denote by V1, . . . , V6 the connected vertex sets with K3,3 = H/(V1, . . . , V6). By
the minimality of H, each graph H[Vi] is a tree and sends exactly one edge each
to three other sets Vj . Thus, the graph consisting of all vertices in Vi ∪N(Vi),
together with all edges that are incident with at least one vertex in Vi, is a
tree, denote it by Ti. The leaves of Ti are precisely its three vertices outside Vi,
because any leaf in Vi could be deleted from H, contradicting the minimality of
H. Note that, by Lemma 3.7 any tree with exactly three leaves has one vertex
of degree three, while all other vertices have degrees two or one.

In particular, if we let vi be the unique vertex of degree three in Ti, it follows
that H is a subdivision of K3,3 with branch vertices v1, . . . , v6.

Now suppose that MK5 ⊆ G and let H ⊆ G be minimal with H = MK5.
Denote V1, . . . , V5 and T1, . . . , T5 as before. (This time, each Ti has four leaves,
one in each Vj with j ̸= i.) Note that, by Lemma 3.7, every tree with four leaves
contains either one vertex of degree four, or two vertices of degree three, with
all other vertices of degree two or one

If each Ti has a vertex vi of degree four, then as before H is a subdivision
of K5 with branch vertices v1, . . . , v5.

CHAPTER 3. PLANAR GRAPHS 50

V1
V2 V3

V4 V5 V6

Figure 3.1: Finding a TK3,3 in an MK3,3. The vertices v1, . . . , v6 in V1, . . . , V6,
respectively, are drawn in red.

We may thus assume that one of the trees, without loss of generality T1, has
no vertex of degree four. Then V1 contains two vertices u1, w1 of degree three
in T1. Partition V1 into two connected sets U1 and W1 that contain u1 and w1,
respectively. Note that, since H[V1] is a tree, there is a unique edge from U1

to W1 and so, by the same arguments as in the previous case, H[U1 ∪ N(U1)]
and H[W1∪N(W1)] are trees with a unique vertex of degree three and all other
vertices of degree two, whose three leaves are N(U1) and N(W1), respectively.
Note that, then, N(U1) meets two Vi with i ≥ 2 and N(W2) meets the other
two.

Then
H ′ := H/(U1,W1, V2, . . . , V5)

contains a K3,3, because if U1 has a neighbour in V2 and V3, say, then each of
U1, V4, V5 is adjacent to each of W1, V2, V3. Therefore, MK3,3 ⊆ G and thus
also TK3,3 ⊆ G by the first part of the proof.

V2

V3

V4

V5

V1

U1

W1

u1

w1

Figure 3.2: Finding an MK3,3 in an MK5. Note that the MK5 also contains
and edge between V2 and V3, as well as between V4 and V5, but those are not
part of the MK3,3.

Corollary 3.9. Every maximally planar graph with at least four vertices is
3-connected.

Proof. Exercise.

CHAPTER 3. PLANAR GRAPHS 51

3.3 The proof of Kuratowski’s theorem

Throughout this section, suppose that L is a non-planar graph that is minimal
with respect to the minor relation, that is, every minor G ̸= L of L is planar.
We shall show that L = K5 or L = K3,3, which will prove Wagner’s (and thus
also Kuratowski’s) theorem.

Remark. By Proposition 3.1 and the minimality of L, we know that L is 2-
connected.

If L has vertices of degree two, then L is a subdivision of a multigraph M
with fewer vertices. Because L is non-planar, M is non-planar as well, and so
is the graph obtained from M by deleting all multiple occurrences of edges. But
this would contradict the minimality of L, thus δ(L) ≥ 3.

Since L is 2-connected, we know that it contains a cycle C. By the minimality
of L, we know that all components of L − C are planar. The basic idea is to
start with a drawing of C and to attach all remaining components to C either
in the inside face or in the outside face of this drawing. Clearly, the way that
such components are attached to C can influence whether we are able to attach
two components on the same “side” of C or not.

Definition. Let C be a cycle in a graph G. A fragment of G with respect to
C is a graph F = G[U]− E(C[U]), where either

(i) U = V (H) ∪N(V (H)), where H is a component of G− C, or

(ii) U = {u, v}, where u, v are distinct vertices of C that are adjacent in G,
but not in C.

The vertex set A(F) := V (F ∩ C) is the attachment set of F .
We say that two fragments F1, F2 overlap if

(i) there exist distinct vertices x1, y1 ∈ A(F1) and x2, y2 ∈ A(F2) that appear
on C in the order x1, x2, y1, y2, or

(ii) |A(F1) ∩A(F2)| ≥ 3.

The graph of overlappings OG(C) is the graph whose vertices are the frag-
ments of G with respect to C, and in which two vertices are adjacent if and only
if the fragments overlap.

Clearly, if two fragments overlap, then we cannot attach them to a given
drawing of C on the same side of C. Thus, if OG(C) is not bipartite, then G
cannot be planar. In fact, we will see that this is the only obstacle to planarity.

Lemma 3.10. Suppose that C is a cycle in a graph G such that for each frag-
ment F , the graph C ∪ F is planar. If OG(C) is bipartite, then G is planar.

Proof. Fix a drawing of C. Let F1, . . . , Fk be the fragments of G with respect
to C and let (P,Q) be a bipartition of {F1, . . . , Fk} such that no two fragments
in the same partition class overlap. We shall prove by induction on i that
F1 ∪ · · · ∪ Fi can be added to the drawing of C for 0 ≤ i ≤ k such that all
fragments in P are drawn into the inner face of C and all fragments in Q are
drawn into the outer face. For i = k, this statement will then yield that G is
planar.

CHAPTER 3. PLANAR GRAPHS 52

C

F1 F2 F3 F4

F5

G

F1

F2

F3

F4

F5

OG(C)

Figure 3.3: The fragments of a graph G with respect to a cycle C, and the graph
of overlappings.

The induction basis is trivial. Now suppose that the induction hypothesis
holds for some 0 ≤ i ≤ k − 1 and consider the fragment Fi+1. Without loss
of generality, we may assume that Fi+1 ∈ P . If there is an inner face of the
drawing of

H := C ∪
⋃

j≤i,Fj∈P

Fj

whose boundary contains A(Fi+1), then we can draw Fi+1 into that face and
be done.6 So suppose that this is not the case. If there are two vertices u, v ∈
A(Fi+1) that do not lie on the boundary of a common inner face ofH, then these
vertices have to be separated by a fragment7 in P , implying that this fragment
overlaps with Fi+1. But this contradicts the fact that any two fragments in P
do not overlap.

uv Fj

C

Figure 3.4: If two vertices u, v in the attachment set of Fi+1 do not lie on the
boundary of a common inner face of H, then they are separated by some earlier
fragment Fj ∈ P , which then overlaps with Fi+1.

Now suppose that some three vertices u, v, w ∈ A(Fi+1) do not lie on the
boundary of a common inner face of H. Then they have to be separated by
some previous fragment Fj ∈ P , which means that either Fj separates two
of the three vertices—which we already know to not be the case—or we have
u, v, w ∈ A(Fj),

8 again contradicting the fact that elements of P do not overlap.

6It is not completely trivial that drawing Fi+1 into that face is automatically possible.
7This formally needs a statement similar to a reverse Jordan curve theorem.
8This part needs quite a couple of topological arguments to be made rigorous.

CHAPTER 3. PLANAR GRAPHS 53

u

v

w

Fj

C

u

v

w

Fj

C

Figure 3.5: If three vertices u, v, w in the attachment set of Fi+1 do not lie on
the boundary of a common inner face of H, then there is some earlier fragment
Fj ∈ P that either separates two of the vertices (left) or contains all three in its
attachment set. Either way, Fj overlaps with Fi+1.

If A(Fi+1) consists of at most three vertices, we are done, so assume that
A(Fi+1) = {v1, . . . , vt} with t ≥ 4 and that v1, . . . , vt do not lie on the boundary
of a common inner face of H. Choose the indices so that v1, . . . , vt appear on C
in that order. Without loss of generality, there is an inner face f1 of H whose
boundary contains v2, v3, v4 (and possibly some of the vertices v5, . . . , vt), but
not v1. Add to H a vertex u1 drawn into f1 and connect it to v2, v3, v4, with
the edges being drawn inside f1 without crossings.

v1

v2v3

v4

v5 v6

u1

f1

C

Figure 3.6: Adding the vertex u1 to H.

We also know that there is an inner face f2 of H whose boundary contains
v1, v2, v3. Add another vertex u2 drawn into f2 and connect it to v1, v2, v3 inside
f2. Finally, add a vertex u3 drawn into the outer face of H and connect it to
v1, v2, v3 inside the outer face. The nine edges we added do not cross and thus
the resulting graph H̃ is plane. But H̃ contains a subdivision of K3,3: both u2

and u3 are adjacent to each of v1, v2, v3, while u1 is adjacent to v2, v3 and is
connected to v1 by the path u1v4Cv1 that avoids the other five vertices. This
contradicts the fact that K3,3 is not planar. Thus, all vertices v1, . . . , vt lie on
the boundary of a common inner face of H, which proves the induction step.

Lemma 3.11. If C is a longest cycle in L, then for each fragment F , the graph
C ∪ F is planar and the set A(F) is independent in C. Furthermore, OL(C) is
an odd cycle and every vertex in C is in the attachment set of some fragment.

Proof. Let F be a fragment; we first show that A(F) is independent in C.
Suppose, for contradiction, that u, v ∈ A(F) are adjacent on C. Then, because
F is connected, there is a u–v path P in F . Moreover, P has length at least

CHAPTER 3. PLANAR GRAPHS 54

two, because u, v are not adjacent in F by definition. But this means that we
could make C longer by following P instead of using the edge uv, contradicting
the maximality of C.

Secondly, it is clear, since δ(L) ≥ 3, that each vertex of C is in the attachment
set of some fragment. In particular, since each A(F) is independent in C, there
must be at least two fragments. It follows that for any fragment F , C ∪ F is a
proper subgraph of L and thus planar by the minimality of L.

In particular, Lemma 3.10 is applicable to C and hence the fact that L is
not planar shows that OL(C) is not bipartite. On the other hand, if we choose
any fragment F , then the union of C and all other fragments is planar by the
minimality of L. Thus, deleting the vertex F from OL(C) results in a bipartite
graph. The only non-bipartite graphs that become bipartite after the deletion
of any single vertex are odd cycles.

For the remainder of this proof, suppose that we have fixed some longest
cycle C in L. Denote the fragments of L with respect to C by F1, . . . , Fk. By
Lemma 3.11, we may assume that k ≥ 3 is odd and each Fi overlaps with Fi−1

and Fi+1 (where we write F0 = Fk and Fk+1 = F1) and with no other Fj ’s.

Lemma 3.12. Each attachment set A(Fi) has size two.

Proof. By Lemma 3.11 no two consecutive vertices of C lie in the same attach-
ment set and

⋃
A(Fi) = V (C).

Since L is 2-connected, each attachment set has at least two vertices. Sup-
pose, for contradiction, that some attachment set is larger, without loss of gen-
erality |A(F1)| ≥ 3. Let x1, . . . , xt be the vertices of A(F1), appearing in this
order on C. For i ̸= j, write [xi, xj] for the vertex set of xiCxj .

For any i = 1, . . . , t, if we delete from L all edges in F1 incident with xi,
then the resulting graph is planar by the minimality of L and thus the graph of
overlappings must have become bipartite. This means that F2 or Fk does not
overlap F1 anymore, which implies A(F2) ⊆ [xi−1, xi+1] or A(Fk) ⊆ [xi−1, xi+1]
(where we again write x0 := xt and xt+1 := x1).

Suppose that t = |A(F1)| ≥ 4. Without loss of generality, we may assume
that A(F2) is contained in [xt, x2] and in [x1, x3] or [x2, x4]. In the former case,
we would have A(F2) ⊆ [xt, x2] ∩ [x1, x3] = [x1, x2], which contradicts the fact
that F1 and F2 overlap in L. In the latter case, we have

A(F2) ⊆ [xt, x2] ∩ [x2, x4] =

{
{x2, x4} if t = 4,

{x2} otherwise.

Since A(F2) has at least two vertices, this would imply t = 4 and A(F2) =
{x2, x4}. By the same arguments, we deduce that A(Fk) = {x1, x3}. This way,
F2 and Fk overlap, which means that k = 3. But then

V (C) = A(F1) ∪A(F2) ∪A(F3) = A(F1),

contradicting the fact that no consecutive vertices of C lie in the same attach-
ment set by Lemma 3.11.

We may thus assume that t = 3 and that all other attachment sets have size
at most three. We have three intervals [x1, x3], [x2, x1], and [x3, x2], each of

CHAPTER 3. PLANAR GRAPHS 55

which contains, again by the minimality of L, (at least) one of the sets A(F2)
and A(Fk). Without loss of generality, A(F2) is contained in [x1, x3] and [x2, x1]
and thus in

[x1, x3] ∩ [x2, x1] = {x1} ∪ [x2, x3].

In particular, x1 ∈ A(F2), because otherwise F1 and F2 would not overlap.
If x2 and x3 both lie in A(F2) as well, then A(F2) = A(F1) (because A(F2)

cannot be larger than A(F1)). As Fk overlaps F1, it overlaps F2 as well, which
again means that k = 3. Since A(F1) is an independent set in C, each of the
three segments [xi, xi+1] has at least one internal vertex yi, which has to lie
in some attachment set. Since they can neither lie in F1 nor in F2, we have
A(F3) = {y1, y2, y3}. But then neither A(F1) nor A(F2) is contained in [y1, y3],
which would have to be the case if we exchange the roles of F1 and F3.

Therefore, not both x2 and x3 lie in A(F2), say x3 /∈ A(F2). In order
for F1 and F2 to overlap, A(F2) has to contain some internal vertex y2 from
[x2, x3]. In particular, A(F2) ̸⊆ [x3, x2] und thus A(Fk) ⊆ [x3, x2]. As F1

and Fk overlap, F2 and Fk overlap as well and we have k = 3. All internal
vertices of [x1, x2] and of [x3, x1] have to lie in A(F3). Hence, each of the two
intervals has only one internal vertex, because A(F3) contains no consecutive
vertices on C. Similarly, A(F3) ⊆ [x3, x2] implies that all internal vertices
of [x2, x3] lie in A(F2), which means that y2 is the only such vertex. Thus,
we have V (C) = {x1, y1, x2, y2, x3, y3} (in this order), A(F2) = {x1, y2}, and
A(F3) = {y1, y3}. But then setting

S1 := {x1}, S2 := {x2}, S3 := {x3},
S4 := V (F1) \A(F1), S5 := V (F2) \ {x1}, S6 := V (F3),

results in connected sets S1, . . . , S6 with L/(S1, . . . , S6) = K3,3 (with sides
{S1, S2, S3} and {S4, S5, S6}), contradicting the minimality of L, because at
least the set S6 contains more than one vertex. This proves that all attachment
sets have size two.

x1

x2

x3

y1

y2

y3

F1

F2

F3

C

S1

S2

S3

S4

S5

S6

Figure 3.7: Finding an MK3,3 in L if F1 has attachment set {x1, x2, x3}.

Lemma 3.13. Each Fi is an edge.

CHAPTER 3. PLANAR GRAPHS 56

Proof. Since each attachment set has size 2, we can contract each fragment F
to a single edge and obtain a graph L′ with OL′(C) = OL(C). In particular,
since L is non-planar, OL(C) is not bipartite and so by Lemma 3.10 neither is
L′, contradicting the minimality of L unless each fragment is an edge.

If k = 3, we know that F1, F2, F3 pairwise overlap, which by Lemmas 3.11
and 3.13 implies that C is a cycle of length six, with vertices v1, . . . , v6 say (in
this order), and each Fi is an edge between vi and vi+3. But then L = K3,3

(with sides {v1, v3, v5} and {v2, v4, v6}) and we would be done. We may thus
assume from now on that k ≥ 5.

Lemma 3.14. For each Fi, one of the two cycles of C ∪ Fi that go through
Fi contains all attachment sets A(Fj) with j /∈ {i − 1, i, i + 1}; the other cycle
contains no attachment set apart from A(Fi).

Proof. Observe first that the fragments Fi−1 and Fi+1 overlap with Fi and
thus their attachment sets are contained in neither of the two cycles. Each
other fragment does not overlap with Fi and thus its attachment set has to be
contained in one of the two cycles.

Suppose now that a cycle C ′ ̸= C in C ∪ Fi contains A(Fj) for some j ̸= i.
Then Fj+1 overlaps with Fj and thus A(Fj+1) has one vertex in C ′. Unless
j + 1 = i − 1, Fj+1 and Fi will not overlap and thus A(Fj+1) is contained in
C ′. Inductively, we get that A(Fj+1), A(Fj+2), . . . , A(Fi−2) lie in C ′ and by
symmetry, the same holds for A(Fj−1), A(Fj−2), . . . , A(Fi+2). This proves the
lemma.

For each i, denote by Ci the cycle from Lemma 3.14 that contains no attach-
ment set. Each Ci contains one vertex from A(Fi−1) and A(Fi+1) each, thus Ci

has length three (if these two vertices coincide) or four. We can denote the end
vertices of each Fi by xi and yi so that each Ci consists of xi, yi−1, xi+1, and
yi (in that order, but possibly with xi+1 = yi−1).

Set

S1 := {x3, y1},
S2 := {x4, y2},
S3 := {x5, y3},

S4 := {x1} ∪
{
x2i : 3 ≤ i ≤ k − 1

2

}
∪
{
y2j : 2 ≤ j ≤ k − 1

2

}
,

S5 := {x2} ∪
{
x2i+1 : 3 ≤ i ≤ k − 1

2

}
∪
{
y2j+1 : 2 ≤ j ≤ k − 1

2

}
.

(Note that S1 will consist of just one vertex if x3 = y1, and the same holds for
S2 and S3.) Then S1, . . . , S5 are connected and satisfy L/(S1, . . . , S5) = K5, a
contradiction to the minimality of L, unless k = 5 and xi+1 = yi−1 for all i, in
which case we have L = K5.

Summing up, we derive a contradiction to the minimality of L in all cases
apart from L = K3,3 or L = K5. This proves that K3,3 and K5 are the
only minor-minimal non-planar graphs. As every non-planar graphs contains
a minor-minimal one as a minor, we have thus proved Wagner’s theorem—and
thus by Proposition 3.8 also Kuratowski’s theorem.

CHAPTER 3. PLANAR GRAPHS 57

x1

x2

x3

x4

x5

x6

x7 x8

x9

y1y2

y3

y4

y5

y6

y7

y8

y9

F1

F2F3

F4

F5

F6 F7

F8

F9

S1
S2

S3

S4

S5

Figure 3.8: Finding an MK5 in L. For each i, the vertices yi−1 and xi+1 may
coincide.

3.4 Graphs on other surfaces

Instead of drawing a graph in the plane, one could equivalently draw it on a
sphere. An obvious generalisation of this concept is drawings of graphs on any
closed surface, e.g. the torus, the projective plane, the Klein bottle etc. A graph
that can be drawn on some given surface is called embeddable on this surface.
Given some drawing, faces and their boundaries are defined analogously to the
planar case.

Regarding drawings of graphs, it is often most convenient to represent a
surface by its fundamental polygon, a polygon of even length whose edges are
(pointwise) identified in pairs to give rise to the desired surface.

Figure 3.9: Fundamental polygons of the torus (left), the projective plane (mid-
dle), and the double torus (right). Edges with the same arrow type are identified
with the orientation indicated by the arrows.

For instance, if we consider the torus, then all planar graphs are clearly
still embeddable. The faces, however, do not have to be of the form that they
are on the sphere. More specifically, the faces of a connected plane graph are
always homeomorphic to open discs (that is, homeomorphic to the open set
{x ∈ R2 : ∥x∥ < 1} in R2), but if we draw, say, K4 on the torus, we might end
up with several types of faces.

What about drawing non-planar graphs on other surfaces? For the torus,
K5 and K3,3 become embeddable, and even K6 and K7 can now be drawn.

CHAPTER 3. PLANAR GRAPHS 58

Figure 3.10: Three different ways to draw K4 on a torus. In the situation on
the left, we have two faces, both of which are discs. In the middle, two of the
three faces are discs and the third one is an open cylinder. On the right, three
faces are discs and the last face is a torus with a hole.

Figure 3.11: Drawing K7 on the torus.

This clearly shows that Euler’s formula is not true for the torus (in fact, it
fails for all surfaces apart from the sphere) and so is the upper bound on the
number of edges from Proposition 3.3. However, we have analogous results to
the planar case for arbitrary (closed) surfaces. We shall state all results in this
section without proof.

Proposition 3.15. Let S be a closed surface. There exists a constant g ≥ 0
such that

(i) every graph G drawn on S has at least

∥G∥ − |G|+ 2(1− g)

faces, with equality if and only if all faces are homeomorphic to open discs;9

(ii) each graph with n ≥ 3 vertices that is embeddable on S has at most

3n+ 6(g − 1)

edges.

Just like for planar graphs, the upper bound in (ii) follows directly from (i).
The value g from Proposition 3.15 is also called the genus of the surface.10

The sphere has genus 0, the torus has genus 1, the double torus genus 2, and

9Observe that this can only be the case when G is connected.
10The notion of the genus can be different in different contexts. A topology textbook for

instance will most probably feature a different definition than ours.

CHAPTER 3. PLANAR GRAPHS 59

so on. Among the non-orientable surfaces, the projective plane has the smallest
genus, namely 1

2 . The Klein bottle has genus 1.
As for planar graphs, embeddability on a surface is closed under taking

minors or topological minors. It is thus natural to ask what properties the
minimal (with respect to the minor relation or the topological minor relation)
non-embeddable graphs have.

Definition (Forbidden minor). Let S be a closed surface. A graph G is called
forbidden minor for S if G is not embeddable on S, but every proper minor of
G is embeddable. Forbidden topological minors are defined analogously.

For the sphere, Wagner’s theorem and Kuratowski’s theorem tell us that the
only forbidden minors or forbidden topological minors are K5 and K3,3. What
about other surfaces? Do we know which graphs are forbidden minors, or do
we at least know the number of forbidden minors? A priori, it is not even clear
that there should only be a finite number of forbidden minors.

Theorem 3.16 (Robertson, Seymour). In any infinite set of graphs, there are
two graphs such that one of them is a minor of the other.

The proof of Theorem 3.16 is spread over 20 papers called “Graph Minors.
I” (published 1983) to “Graph Minors. XX” (from 2004) and consists of more
than 500 pages in total.11 The work of Robertson and Seymour has provided a
plethora of new concepts, results, and insights.

As a corollary, we get immediately that for any surface, the set of forbidden
minors is finite.

Corollary 3.17. For every closed surface S, the set of forbidden minors is
finite.

For topological minors, an analogue of Theorem 3.16 does not hold—there
are infinite sets of graphs in which none is a topological minor of another. Corol-
lary 3.17, however, remains true if we replace “forbidden minors” by “forbidden
topological minors” (exercise).

For the projective plane—the surface with the smallest non-zero genus—the
sets of forbidden minors and forbidden topological minors have been determined;
there are 35 forbidden minors and 103 forbidden topological minors. But even
for the torus, seemingly the “easiest” remaining case, the full lists are not known.
So far, 16629 forbidden minors and 239322 forbidden topological minors have
been found for the torus. This makes the theorems of Kuratowski and Wagner
all the more impressive.

3.5 Planarity recognition algorithms

A planarity recognition algorithm should tell us, for any input graph G, whether
G is planar, preferably within short running time. An additional feature would
be if the algorithm also outputs a reason for its decision, i.e. a drawing of G if
G is planar, or some certificate for the non-planarity of G otherwise.

11Since then, Robertson and Seymour published more papers under the “Graph Minors”
header, the most recent being “Graph Minors. XXIII” from 2010. These newer works are
part of the “Graph minors project”, but the proof of Theorem 3.16, by far the most famous
result of the project, was finished with Part XX.

CHAPTER 3. PLANAR GRAPHS 60

Using the theorems of Kuratowski and Wagner, one could try to look for K5

and K3,3 as (topological) minors. All algorithms relying on this approach have
the downside that they do not provide a drawing if the graph is planar.

Näıve approach. If we contract edges in all possible orders and check whether
we end up with a K5 or a (graph containing a) K3,3, we need time O(m!), which
obviously is rather bad.

Näıve approach 2. Decompose the vertex set into five or six sets and check
whether they are connected. If so, contract them and check whether the ob-
tained minor is a K5 or a (graph containing a) K3,3. This algorithm can be
implemented to have running time O(n26n), which is much better than a run-
ning time of order m!, but still exponential.

More sophisticated approach. Results of Robertson and Seymour from the
“Graph Minors” papers imply that for any fixed graph H, it only takes time
O(n2) to check whether G contains an MH. In particular, planarity can be
tested in quadratic time. Unfortunately, the description of the algorithm needs
a couple of concepts and results about graph minors, which is why we will not
present any details about that algorithm in this course.

Finding a drawing. Our proof of Kuratowski’s theorem can be used to create
an algorithm that checks planarity and either finds a drawing or outputs a
certificate for the graph not being planar. We start by finding a cycle C.

� If F ∪ C is planar for each fragment F (which is checked by recursive
application of the algorithm), and if the graph OG(C) of overlappings is
bipartite, then we can recursively combine the drawings of the fragments
to a drawing of G.

� Otherwise, the algorithm will find a certificate for the non-planarity of G,
namely a non-bipartite graph of overlappings (not necessarily OG(C), but
OG′(C ′) for some subgraph G′ of G appearing in the recursive applications
of the algorithm).

This algorithm is reasonably fast (exercise), and even faster if we assume that
there is a cycle C with V (C) = V (G). Furthermore, if we’re a little more careful
and find a cycle C where the attachment set of each fragment F is independent
in C (for example a longest cycle), then the argument in the proof will even find
an MK5 or MK3,3.

Linear time algorithms. There are different algorithms that can check pla-
narity (and find a certificate for or against it) in time O(n). The first such
algorithm was presented by Hopcroft and Tarjan in 1974. However, linear time
planarity tests are not exactly easy to understand.

The known planarity algorithms that achieve linear time complex-
ity are all difficult to understand and implement. This is a serious
limitation for their use in practical systems. A simple and efficient
algorithm for testing the planarity of a graph and constructing pla-
nar representations would be a significant contribution.

CHAPTER 3. PLANAR GRAPHS 61

[G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Algorithms for drawing

graphs: an annotated bibliography, Computational Geometry 4 (1994), 235–282]

More on the algorithmic aspects of planar graphs can for instance be found in
Chapter 8 of The LEDA Platform of Combinatorial and Geometric Computing
by K. Mehlhorn and S. Näher, which is available online at

https://people.mpi-inf.mpg.de/~mehlhorn/LEDAbook.html

Chapter 4

Colourings

Definition (Colouring, chromatic number). A colouring of a graph G is a
function c : V (G) → S, for which uv ∈ E(G) implies c(u) ̸= c(v) (in words:
adjacent vertices get different colours). S is called the set of colours. For each
s ∈ S, we call the set c−1(s) a colour class.

A colouring with k colours is called k-colouring. If a k-colouring of G exists,
we also say that G is k-colourable. If c is a k-colouring, we will often tacitly
assume that the set of colours is {1, . . . , k}.

We define the chromatic number of G as χ(G) := min{k : G is k-colourable}.

Figure 4.1: A 3-colouring of the Petersen graph.

4.1 Basic bounds

Can we give upper or lower bounds on the chromatic number? The number of
vertices is clearly an upper bound, and 2 is a lower bound if the graph has at
least one edge. Less trivial bounds can be obtained by comparing the chromatic
number with other graph parameters.

Definition (Clique number, independence number). The clique number ω(G)
of a graph G is the size of a largest clique in G. The independence number α(G)
of G is the size of the largest independent set.

The clique number and the independence number provide easy lower bounds
on the chromatic number.

62

CHAPTER 4. COLOURINGS 63

Proposition 4.1. For every non-empty graph G, the following statements hold.

(i) χ(G) ≥ ω(G);

(ii) In any colouring of G, each colour class is an independent set;

(iii) χ(G) ≥
⌈

|G|
α(G)

⌉
.

Proof. (i) G contains a Kω(G) and thus χ(G) ≥ χ(Kω(G)) = ω(G).

(ii) Any edge between two vertices from the same colour class would contradict
the definition of a colouring.

(iii) If there were a k-colouring of G with k < |G|
α(G) , then by the pigeon-

hole principle one of the colour classes would contain at least |G|
k > α(G)

vertices. However, by (ii) each colour class is independent, a contradiction.

Observe that the lower bounds (i) and (iii) can be tight in some cases and
far off the truth in other cases. There exist

� graphs with χ(G) = ω(G) = |G| /α(G) (e.g. even cycles);

� graphs with χ(G) = ω(G), but |G| /α(G) being much smaller (e.g. a com-
plete graph plus “many” isolated vertices);

� graphs with |G| /α(G) “close” to χ(G), but ω(G) being much smaller (see
Proposition 4.2);

� graphs with both ω(G) and |G| /α(G) much smaller than χ(G).

Proposition 4.2. For every positive integer k, there exists a triangle-free graph
Gk with χ(Gk) = k.

Proof. For k = 1, 2, the graphs G1 := K1 and G2 := K2 suffice. Now suppose
that k ≥ 3 and that we already know Gk−1 with the desired properties. Write
V (Gk−1) = {vi : 1 ≤ i ≤ |Gk−1|}. For each vi, add to Gk−1 a vertex wi and
connect it to all neighbours of vi in Gk−1. Finally, add a vertex z and connect
it to all wi’s. Denote the resulting graph by Gk.

v1

v2

w1

w2

zG3

v1

v2

v3 v4

v5

w1

w2

w3 w4

w5
z

G4

Figure 4.2: Constructing Gk from Gk−1.

CHAPTER 4. COLOURINGS 64

Let us first show that Gk is triangle-free. We know that Gk−1 is triangle-free
and that the wi’s form an independent set. Since z is only adjacent to wi’s, this
means that any triangle in Gk would have to be of the form wivjvℓ. But then
vivjvℓ would be a triangle in Gk−1, a contradiction.

By assumption there is a (k − 1)-colouring c of Gk−1. We can define a k-
colouring of Gk by giving each vi and wi the colour c(vi) and giving z the colour
k. It is easy to check this is a colouring of G, and hence, χ(Gk) ≤ k.

It remains to prove that Gk is not (k − 1)-colourable. Suppose, for contra-
diction, that there exists a (k− 1)-colouring c of Gk and set j := c(z). Consider
the colouring that c induces on Gk−1. If a vertex of colour j does not have
neighbours (in Gk−1) of all other colours, then we could re-colour it with some
colour missing among its neighbours and still have a colouring of Gk−1. If this
were possible for all vertices coloured with j, we could completely avoid using
colour j. This would give us a (k− 2)-colouring of Gk−1, which we know not to
exist.

This means that there is some vertex vij of colour j with all other colours
appearing among the neighbours of vij in Gk−1. Since wij is adjacent to all
these vertices, we have c(wij) = j as well. But then wij is a neighbour of z with
the same colour as z, a contradiction. Thus, χ(Gk) = k.

The graph Gk from Proposition 4.2 has clique number ω(Gk) = 2. By
construction, we have |Gk| = 2 |Gk−1|+1 and α(Gk) ≥ |Gk−1| for k ≥ 3, which
means that ⌈|Gk| /α(Gk)⌉ ≤ 3. (With a little effort, one can even show that
α(Gk) = |Gk−1| and thus ⌈|Gk| /α(Gk)⌉ = 3.) In particular, both lower bounds
from Proposition 4.1 are far from the true value χ(Gk) = k.

Remark. An even stronger statement than Proposition 4.2 is that for every
k ≥ 3, there exists a graph Hk with χ(Hk) ≥ k, but with no cycle of length k or
shorter.

These graphs are much harder to construct directly, and their existence is
usually proved using random graphs. The course Probabilistic method in com-
binatorics and algorithmics features a proof.

Let us now determine an upper bound on χ(G). The easiest bound is simply
derived by counting edges.

Proposition 4.3. χ(G) ≤ 1
2 +

√
2 ∥G∥+ 1

4 for every graph G.

Proof. In a χ(G)-colouring c, there has to be at least one edge between any two
colour classes c−1(i), c−1(j), because otherwise we could simply recolour all ver-
tices in c−1(j) with colour i to find a colouring with less colours, a contradiction

to the definition of χ(G). Thus, ∥G∥ ≥
(
χ(G)
2

)
= 1

2 (χ(G)2 −χ(G)). Solving this
inequality for χ(G) yields the claimed bound.

Similar to planarity, the chromatic number can be determined by looking at
all blocks of a graph.

Proposition 4.4. χ(G) = max{χ(B) : B is a block of G} for every graph G.

Proof. “≥” is clear. Vice versa, observe that by Proposition 1.13, we can denote
the blocks of G by B1, . . . , Bk so that each Bi meets B1 ∪ · · · ∪Bi−1 in at most
one vertex, which we then call vi. Let us write m := max{χ(G1), . . . , χ(Gk)}.

CHAPTER 4. COLOURINGS 65

Recursively colour each Bi with m colours. If necessary, permute the colours in
such a way so as to assign to vi the colour it has in B1∪ · · · ∪Bi−1. Inductively,
this defines an m-colouring of G.

4.2 Colouring planar graphs

The most famous result about graph colourings is arguably the “Four Colour
Theorem”.

Theorem 4.5 (Appel, Haken 1977). Every planar graph is 4-colourable.

The Four Colour Theorem is mostly known for its computer-based proof.
Later, a written proof comprising 741 pages was published. The general proof
strategy can be summarised as follows.

(i) Assume that we are given a drawing of G, which we may assume is maxi-
mally planar, and so this drawing is a triangulation.

(ii) Prove that G then contains (at least) one of 1476 so-called “unavoidable
configurations”.

(iii) Show that any triangulation containing such a configuration is “reducible”,
that is, it can be decomposed into smaller parts so that any 4-colourings
of these parts can be combined into a 4-colouring of G. Each configuration
has to be treated separately, leading to a case distinction with 1476 cases,
which was solved using a computer.1

(iv) Use induction on |G|.

Before the Four Colour Theorem was proved, it was conjectured to be true
for more than hundred years and many (false) proofs were published. One of
these attempts led to a proof of the “Five Colour Theorem”.

Theorem 4.6. Every planar graph is 5-colourable.

Proof. Suppose, for contradiction, that there are planar graphs that are not
5-colourable; let G be a smallest such graph. Clearly, G has at least six vertices
and thus at most 3 |G|−6 edges by Proposition 3.3. This means that the average
degree of G is smaller than six and so there is a vertex v with d(v) ≤ 5. By the
minimality of G, the graph G− v is 5-colourable.

Fix a 5-colouring c of G − v. If the neighbours of v are coloured with four
(or less) colours, then we could use the fifth colour for v, contradicting the fact
that G is not 5-colourable. In particular, v has precisely five neighbours and
each is coloured with a different colour. Fix some drawing of G and denote
the neighbours of v by x1, . . . , x5 so that they appear around v in that order
(in the drawing). Without loss of generality, we may assume that c(xi) = i for
i = 1, . . . , 5.

For 1 ≤ i ≤ 5, let us write Ui := c−1(i). Let H1 be the component of the
graph G[U1 ∪ U3] (i.e. the graph induced on the vertices of colours 1 and 3)
that contains x1. If x3 does not lie in H1, then we can exchange the colours 1

1In 1996, Robertson, Sanders, Seymour, and Thomas gave an alternative proof which only
needed 633 configurations, but still relied on computer assistance to prove their reducibility.

CHAPTER 4. COLOURINGS 66

and 3 for all vertices in H1 and create a new colouring that does not use the
colour 1 for the neighbours of v. In that case, we give colour 1 to v and have a
5-colouring of G, a contradiction.

v

x1

x2

x3 x4

x5

H1

v

x1

x2

x3 x4

x5

P

Figure 4.3: The first proof of the Five Colour Theorem. Either we can switch
colours 1 and 3 in H1, resulting in colour 1 not being used among the neighbours
of v (left), or there exists an x1–x3 path P in colours 1 and 3, which (together
with the edges vx1 and vx3) separates x2 and x4.

Thus, G[U1 ∪ U3] contains an x1–x3 path P . Analogously, we find an x2–
x4 path Q in G[U2 ∪ U4]. But this is not possible, since the cycle x1Px3vx1 in
G is disjoint from Q, but separates x2 and x4.

Alternative proof. Like in the first proof, suppose that G is a minimal coun-
terexample. Again, we find a vertex v of degree five. As G is planar, it does not
contain a K5. In particular, the neighbours of v are not pairwise adjacent. Sup-
pose that neighbours w1, w2 of v are not adjacent. Then G′ := G/{v, w1, w2} is
a minor of G and hence planar. Thus, G′ is 5-colourable due to the minimality
of G.

Pick a 5-colouring of G′. This induces a 5-colouring of G − v by giving w1

and w2 the colour of {v, w1, w2} and letting all other vertices keep their colour.
As w1, w2 have the same colour, at most four colours are used for the neighbours
of v and we can colour it with the fifth colour to obtain a 5-colouring of G, a
contradiction to the choice of G.

v
w1 w2

Figure 4.4: The second proof of the Five Colour Theorem. The graph G′ ob-
tained by contracting {v, w1, w2} is planar and thus 5-colourable by the mini-
mality of G. A 5-colouring c′ of G′ induces a 5-colouring c of G− v by setting
c(w1) = c(w2) := c′({v, w1, w2}) and c(x) := c′(x) for all other vertices. Then
at least one colour is “free” to be used for v.

Finally, let us state (without proof) another well-known result.

Theorem 4.7 (Grötzsch 1959). Every triangle-free planar graph is 3-colourable.

CHAPTER 4. COLOURINGS 67

4.3 The greedy algorithm

If we want an algorithm that finds a colouring for every input graph G, there
are two opposing aims. The first aim would be that the colouring uses “few”
colours (preferably close to χ(G)); the second aim would be a “short” running
time. Let us first concentrate on running time.

Suppose that the vertex set of our input graph is given with some fixed
ordering v1, . . . , vn of the vertices. The basic idea of our first algorithm is to
take, in each step, the first vertex that has no colour yet, and assign to it the
first colour that is not already used for any of its neighbours.

PROCEDURE GREEDY COLOURING
BEGIN

c(v1) := 1;
FOR (i = 2 to n){

c(vi) := min{k ∈ N \ {0} : k ̸= c(vj) ∀j < i with vj ∈ N(vi)};
}

END

Definition (Greedy algorithm). We call the algorithm above the greedy algo-
rithm. For an ordering σ = (v1, . . . , vn) of the vertices of a graph G, we denote
by χGr(G, σ) the number of colours used by the greedy algorithm.

Clearly, the greedy algorithm produces a valid colouring. This colouring,
however, might use more than χ(G) colours. For instance, depending on the
ordering of the vertices, the greedy algorithm might need three colours to colour
a cycle of length six.

1

2

1

2

3

3

v1

v2

v3

v4

v5

v6

Figure 4.5: Colouring a cycle of length six with the greedy algorithm. If the
vertices are numbered as in the picture, then the greedy algorithm will need
three colours.

Proposition 4.8. Let σ be a fixed ordering of V (G), where G ̸= ∅.

(i) The greedy algorithm runs in time Θ(n+m).

(ii) χ(G) ≤ χGr(G, σ) ≤ 1 + ∆(G).

Proof. (i) Every vertex is considered as vi exactly once, and every edge e =
vivj with j < i adds exactly one calculation step (when the minimum in
the definition of c(vi) is determined).

(ii) The lower bound is trivial, since the algorithm produces a valid colouring.
For the upper bound, observe that each vi has at most d(vi) ≤ ∆(G)
neighbours amongst v1, . . . , vi−1 and thus c(vi) ≤ 1 + ∆(G).

CHAPTER 4. COLOURINGS 68

There are graphs for which the lower bound χ(G) and the upper bound
1 + ∆(G) in (ii) coincide (e.g. complete graphs or odd cycles). On the other
hand, the two values can be arbitrarily far apart, and χGr(G, σ) can be at either
end of the spectrum.

It is easy to see that there is always an ordering resulting in the greedy
algorithm needing only χ(G) colours (exercise). However, in terms of an efficient
algorithm, we would need to be able to identify a “good” ordering in short time,
without having any additional information. To this end, observe that when the
greedy algorithm assigns a colour to vi, it seems to be an advantage if vi has as
few neighbours amongst v1, . . . , vi−1 as possible.

Definition (Backwards degree). Given an ordering σ of V (G), let us write
Gi := G[v1, . . . , vi]. The backwards degree of vi is defined as dGi

(vi). We denote
by b(σ) := max1≤i≤n dGi

(vi) the largest backwards degree with respect to σ.

Observe that the upper bound in Proposition 4.8(ii) can be improved using
the notation of the backwards degree, because for each vi, only its degree in Gi

is important. We thus immediately have the following result.

Proposition 4.9. For every graph G, we have χ(G) ≤ 1 + minσ b(σ), where
the minimum is taken over all orderings of V (G).

Can we find an ordering σ that minimises b(σ) without having to check all
possible orderings? Surprisingly, this is even possible in linear time.

PROCEDURE SMALLEST LAST
BEGIN

Gn := G;
FOR (i = n down to 1){

Find vertex vi of minimum degree in Gi;
Gi−1 := Gi − vi;

}
END

Remark. Given G, we can determine all vertex degrees in time Θ(n + m).
Encode the degrees by saving, for each i, all vertices of degree i in a list. Then
indentifying vi takes time Θ(dGi

(vi)) and so does adjusting the degrees for Gi−1.
This means that it takes time Θ(

∑
i dGi

(vi)) = Θ(n+m) to finish all instances
of the FOR-loop.

Thus, SMALLEST LAST can be implemented to run in time Θ(n+m).

We use the natural notion of a smallest-last ordering for any ordering that
can be produced by the smallest-last algorithm.

Proposition 4.10. For any graph G and any smallest-last ordering σ0 of V (G),
we have b(σ0) = maxH⊆G δ(H) = minσ b(σ).

Proof. By construction, we have b(σ0) = maxi δ(Gi) ≤ maxH⊆G δ(H). Suppose
that H = H0 maximises δ(H). For any ordering σ, let k be the largest index of
a vertex in H0. Then

max
H⊆G

δ(H) = δ(H0) ≤ dH0(vk) ≤ dGk
(vk) ≤ b(σ)

CHAPTER 4. COLOURINGS 69

and thus
b(σ0) ≤ max

H⊆G
δ(H) ≤ min

σ
b(σ) ≤ b(σ0),

which means that we have equality, as desired.

With this result, we can improve the upper bound from Proposition 4.8(ii)
in the case of a smallest-last ordering σ.

Corollary 4.11. Let G be any graph.

(i) χ(G) ≤ χGr(G, σ) ≤ 1 + maxH⊆G δ(H) for every smallest-last ordering σ
of V (G).

(ii) G contains a subgraph of minimum degree at least χ(G)− 1.

Proof. (i) follows directly from Propositions 4.9 and 4.10. (ii) is an immediate
consequence of (i).

4.4 Brooks’ theorem

In some cases (e.g. K1,r as an extreme example), the upper bound for the
chromatic number from Corollary 4.11 is much better that the immediate bound
1 + ∆(G) from Proposition 4.8(ii). In some other cases (e.g. regular graphs),
however, the two bounds coincide. The next result shows that being regular is
essentially the only cause for the bounds to coincide.

Proposition 4.12. If G is connected and non-regular, then χ(G) ≤ ∆(G).

Proof. Since G is not regular, we have δ(G) ≤ ∆(G) − 1. Let v be a vertex of
degree δ(G) and let H be any subgraph of G. If v lies in H, then δ(H) ≤ dH(v)
and thus in particular δ(H) ≤ ∆(G)− 1. Otherwise, due to the connectedness
of G, there is a vertex w in H with a neighbour in G− V (H). Thus,

δ(H) ≤ dH(w) ≤ dG(w)− 1 ≤ ∆(G)− 1.

Therefore, χ(G) ≤ ∆(G) by Corollary 4.11.

As mentioned before, complete graphs and odd cycles are examples for
graphs with χ(G) = ∆(G) + 1. These are basically the only such graphs.

Theorem 4.13 (Brooks 1941). If G is connected and neither complete nor an
odd cycle, then χ(G) ≤ ∆(G).

There are direct proofs of Brooks’ theorem (see e.g. Diestel’s book), but we
will prove it via an auxiliary result.

Lemma 4.14. If G is 2-connected and neither complete nor a cycle, then there
are two vertices x, y of G of distance two (i.e. x, y are not adjacent, but have a
common neighbour), for which G− x− y is connected.

Proof. First observe that ∆(G) ≥ 3, because G is 2-connected, but not a cycle.
Let v be a vertex of degree ∆(G) and set H := G[N(v) ∪ {v}]. We claim that
H is not complete. For if H = G, then H is not complete by assumption.

CHAPTER 4. COLOURINGS 70

Otherwise, G−H is non-empty and by the connectedness of G, there is a vertex
w ∈ V (H) that has a neighbour in G−H and thus satisfies

dH(w) < dG(w) ≤ dG(v) = ∆(G) = |H| − 1,

implying that H is not complete.
Therefore, H contains two non-adjacent vertices, say a and b. Both of them

are neighbours of v and thus a and b have distance two. If G−a−b is connected,
we can set x = a and y = b and be done. We may thus assume that G− a− b
is not connected. Let C be the component of G− a− b that contains v. Recall
that v has degree ∆(G) ≥ 3 in G, which implies that v has at least one more
neighbour apart from a and b and thus |C| ≥ 2. If v were the only vertex in
C adjacent to a or b, then v would be a cut vertex, contradicting the fact that
G is 2-connected. Thus, there is a vertex x ∈ C − v that is adjacent to a or b,
without loss of generality to a.

v

a

b

x y
C

C ′

Figure 4.6: Finding the vertices x and y.

As b is not a cut vertex, a has a neighbour in each component of G−a−b. Let
y be a neighbour of a in some component C ′ ̸= C. Then x and y have distance
two. To prove that G− x− y is connected, let u be a vertex in G− x− y. By
Menger’s theorem and the 2-connectedness of G, there is a u–{a, b} fan in G
consisting of two paths. Only one of these paths can meet x or y, because x and y
lie in different components of G−a−b. Therefore, there is a u–{a, b} path—and
thus also a u–v path—in G− x− y, meaning that G− x− y is connected.

Proof of Theorem 4.13. Suppose first that G is 2-connected. If G is an even
cycle, then χ(G) = ∆(G) = 2 and we are done. We may thus assume that G is
neither complete nor a cycle, hence Lemma 4.14 can be applied. Write n := |G|.
We denote the two vertices provided by Lemma 4.14 by v1 and v2, and let vn
be a common neighbour of them. Perform a depth first search2 in G− v1 − v2,
starting from vn, and enumerate the remaining vertices as v3, . . . , vn−1 so that
DFSnum[vi] = n+ 1− i (i.e. in the reverse order of how DFS discovers them).

Run the greedy algorithm with the ordering v1, . . . , vn. Both v1 and v2
receive colour 1 by this algorithm. For each i with 3 ≤ i ≤ n−1, the parent of vi
in the DFS-tree has larger index and thus does not contribute to the backwards
degree of vi in the greedy algorithm. This means that vi has backwards degree
at most d(vi) − 1 ≤ ∆(G) − 1 and thus receives colour at most ∆(G) by the
algorithm. Finally, vn has two neighbours with the same colour (v1 and v2) and
thus at most ∆(G)−1 colours are used among its neighbours. This implies that

2A breadth first search would work as well.

CHAPTER 4. COLOURINGS 71

v1 v2

v3

v4

v5

v6v7

v8

v9
v10

v11

v12

Figure 4.7: A DFS-tree and the corresponding ordering v1, . . . , vn for n = 12.

vn also receives colour at most ∆(G) and thus the greedy algorithm produces a
colouring with at most ∆(G) colours, as desired.

Now suppose that G is not 2-connected. Let B be a block of G, we claim
that it is ∆(G)-colourable. If ∆(B) < ∆(G), this follows directly from Proposi-
tion 4.8(ii) (applied to B). Otherwise, because B has a vertex v with a neighbour
in G−B,

δ(B) ≤ dB(v) ≤ dG(v)− 1 ≤ ∆(G)− 1 = ∆(B)− 1

and B is not regular. By Proposition 4.12, B is ∆(G)-colourable. Now Propo-
sition 4.4 proves that χ(G) ≤ ∆(G).

4.5 Algorithms for optimal colourings

Näıve approach. The only colouring algorithm we have encountered so far
is the greedy algorithm. There is always an ordering of the vertices for which
the greedy algorithm produces a colouring of the graph G with χ(G) colours.
A näıve approach would thus be to run the greedy algorithm for all possible
orderings and to compare the number of colours used. This would take time

Θ
(
(n+m) · n!

)
.

Zykov’s algorithm. We need the following auxiliary result.

Lemma 4.15 (Zykov 1949). If x, y are non-adjacent vertices of a graph G, then

χ(G) = min
{
χ(G+ xy), χ

(
G/{x, y}

)}
.

Proof. The colourings of G+ xy are precisely those colourings of G for which x
and y are coloured differently. Similarly, the colourings of G/{x, y} correspond
to precisely those colourings of G in which x and y have the same colour (give x
and y the colour of {x, y}, or vice versa). Thus, the desired equality follows from
the definition of the chromatic number as the minimum of colours used.

CHAPTER 4. COLOURINGS 72

PROCEDURE ZYKOV(G)
BEGIN

IF (G complete) THEN χ(G) := n;
ELSE{

FIND (x, y ∈ V (G) not adjacent);
ZYKOV(G+ xy);
ZYKOV(G/{x, y});
χ(G) := min{χ(G+ xy), χ(G/{x, y})};

}
END

Let us determine a rough bound for the running time of this algorithm.
To this end, we first consider only those calls of the procedure in which the
argument is a graph with n vertices. There are O(n2) many such graphs. Each
call of the procedure for such a graph then features a call of a graph with n− 1
vertices, followed by O((n − 1)2) further calls for graphs with n − 1 vertices.
Recursively, we have to multiply with O(k2) for the number of calls for graphs
with k vertices.3 Even if we pretend that each call of the procedure only takes
constant time, we end up with a running time of

O
(
(n!)2

)
,

which is actually worse than the näıve approach. This might partly be due to
our rough estimates, but it is not far from the truth.

Proposition 4.16 (McDiarmid 1979). There exists a constant α > 0 such that
the Zykov algorithm has running time at least nαn for almost all graphs (that
is, for all but a o(1)-proportion of all graphs on n vertices).

Observe that the bound from Proposition 4.16 is much larger than any “sim-
ple” exponential bound of the type γn.

Remark. For k ∈ N and a graph G, denote by PG(k) the number of k-colourings
of G. An analogous argument to Lemma 4.15 shows that for e ∈ E(G),

PG(k) = PG−e(k)− PG/e(k).

From this, it is not hard to prove by induction on ∥G∥ that PG(k) is a polynomial

PG(k) = k|G| − ∥G∥ k|G|−1 + · · ·

and is thus called the chromatic polynomial of G.

Christofides’ algorithm. The next algorithm uses the following easy obser-
vation.

Remark. For every graph G, there is a colouring with χ(G) colours for which
some colour class is a maximal independent set. Thus,

χ(G) = 1 +min{χ(G− S) : S maximally independent}.
3Each graph on k vertices will be the argument of the procedure multiple times, which

is why we have to multiply these numbers instead of summing them. One could change the
algorithm so that it is called only once for each graph, but this would make it necessary to save
the chromatic number of each graph occurring in the recursion. This would need a memory
that is too large to be useful in practice.

CHAPTER 4. COLOURINGS 73

We can thus determine the chromatic number recursively, from smaller
graphs to larger graphs.

BEGIN
χ(∅) := 0;
FOR (k = 1 to n){

FOR (U ∈
(
V (G)

k

)
){

χ(G[U]) := k;
FOR (S max. ind. in G[U]){

χ(G[U]) := min{χ(G[U]), 1 + χ(G[U \ S])};
}

}
}

END

Observe that at the time when χ(G[U]) is computed, the algorithm has
already determined the chromatic numbers of all subgraphs G[U \ S] of G,
because |U \ S| < |U |.

To estimate the running time of this algorithm, we need to know how
many maximally independent sets there are. We use the following result by
Christofides without proof.

Lemma 4.17 (Christofides 1971). For a set U of k vertices in a graph G,
there are at most 3k/3 maximal independent sets in G[U]. These sets can be
determined in time O(k33k/3).

Using Lemma 4.17, we see that the running time of the algorithm is at most

n∑
k=1

(
n

k

)
O(k33k/3) ≤ O

(
n3

n∑
k=0

(
n

k

)
(

3
√
3)k

)
= O

(
n3(1 +

3
√
3)n
)
.

This running time is much faster than for the näıve approach or for Zykov’s
algorithm. However, Christofides’ algorithm needs an exponentially large mem-
ory, because all chromatic numbers of subgraphs G[U] have to be remembered.
This makes the algorithm hard to use in practice.

Backtracking (Brown 1972). This algorithm colours the vertices one by
one similar to the greedy algorithm, thus we need to start with an ordering
v1, . . . , vn of the vertices. The main idea is that, when determining the colour
of vk, we try all “feasible” colours, including one “new” colour. Moreover, we
only continue as long as the number of colours used for v1, . . . , vk is smaller than
the current optimum. Otherwise, we go back to the previous vertex.

CHAPTER 4. COLOURINGS 74

PROCEDURE COLOUR(k)
BEGIN

NumCols[k] := NumCols[k − 1];
Queue Available[k] := (1, . . . ,NumCols[k]);
FOR (vi ∈ N(vk) ∩ {v1, . . . , vk−1}){

Remove c(vi) from Available[k];
}
IF (k < n){

WHILE (Available[k] ̸= ∅ AND NumCols[k] < χ){
c(vk) := First(Available[k]);
COLOUR(k + 1);
Remove c(vk) from Available[k];

}
IF (NumCols[k] < χ− 1){

NumCols[k] := NumCols[k] + 1;
c(vk) := NumCols[k];
COLOUR(k + 1);

}
}
ELSE IF (Available[k] ̸= ∅){

χ := NumCols[k];
}
ELSE{

χ := min{χ,NumCols[k]+1};
}

END

The main program first has to choose the ordering of the vertices (e.g. via
a smallest last algorithm). For the number χ of colours used in the “best”
colouring so far, we start with the trivial upper bound n.

BEGIN
χ := n;
Choose an ordering (v1, . . . , vn);
c(v1) := 1;
NumCols[1] := 1;
COLOUR(2);
RETURN χ;

END

When we call COLOUR(2), we clearly assume that the graph has at least
two vertices.

The first colouring that the backtracking algorithm finds is precisely the
colouring found by the greedy algorithm with the given ordering of the vertices.
All subsequent steps will then try to improve this colouring.

All possible ways to colour G can be encoded in a tree TG as follows.

� Each vertex in the k-th layer of TG (0 ≤ k ≤ n − 1) represents a partial
colouring of G in which precisely v1, . . . , vk+1 are coloured.

� For k ≥ 1, each vertex in the k-th layer of TG is the child of the vertex in
the (k − 1)-th layer that is obtained by removing the colour of vk+1.

CHAPTER 4. COLOURINGS 75

The backtracking algorithm goes through the tree in lexicographical order.
Whenever it reaches a leaf, the current “optimal” number χ of colours is im-
proved. After that, only branches of the tree that use less than χ colours will
be considered by the algorithm.

v1 v2v3 v4

G

(1)

(1, 1)

(1, 2)

(1, 1, 2)

(1, 2, 2)

(1, 2, 3)

(1, 1, 2, 3)

(1, 2, 2, 1)

(1, 2, 2, 3)

(1, 2, 3, 1)

(1, 2, 3, 4)

TG

Figure 4.8: The auxiliary tree TG for a path of length three, where the la-
bels denote the colours of v1, . . . , vk in this order. The backtracking algorithm
will first explore the topmost branch in TG until it reaches the leaf (1, 1, 2, 3).
Then it sets χ := 3, which effectively removes the vertices (1, 2, 2, 3), (1, 2, 3),
(1, 2, 3, 1), and (1, 2, 3, 4) from the tree. After that, the topmost (in this case
only) remaining branch ending in (1, 2, 2, 1) is explored.

Remark. It has been shown that for “most” graphs, there is an optimal colour-
ing that corresponds to an “early” branch in the auxiliary tree, independently
from the choice of the initial ordering (v1, . . . , vn). Most of the time will be spent
by the algorithm to check that no “later” branch uses less colours. Therefore,
choosing the ordering in a specific way has rather little effect.

In terms of running time, the worst-case bound for the backtracking algo-
rithm is O(n!), but there exists a constant γ > 1 such that for almost all graphs,
the running time is actually O(γn). This means that while backtracking is the-
oretically slow, it is nevertheless reasonably fast in practice.

Remark. Identifying 2-colourable (i.e. bipartite) graphs is easy (exercise). For
fixed k ≥ 3, determining whether a given graph is k-colourable is NP-complete.
The problem of computing the chromatic number is NP-hard.

4.6 Colouring heuristics

In this section, we will see some algorithms that do not necessarily find an
optimal colouring, but that are efficient and produce an optimal colouring in
“many” cases. As a minimum requirement, we would like these algorithms to be
able to identify bipartite graphs, that is, they should find a 2-colouring whenever
the input graph is bipartite.

Saturation-largest-first heuristic (Brélaz 1979). The main idea of this
algorithm is to colour the vertices greedily, but to choose the ordering dynam-
ically. While the smallest-last ordering always put the vertex with smallest

CHAPTER 4. COLOURINGS 76

degree to the last position, we will now always choose a vertex that has as many
different colours among its neighbours as possible and put it at the first position.

Definition (Saturation-largest-first algorithm). If some vertices of a graph G
are coloured by a partial colouring c, we define the forbidden colours of a vertex
v as

Nc(v) := {c(u) : u is a coloured neighbour of v}.

The saturation-largest-first algorithm is defined by recursively setting

vi := argmax{|Nc(v)| : v ∈ V (G) \ {v1, . . . , vi−1}}

and
c(vi) := min({1, . . . , i} \Nc(v)).

Proposition 4.18. The saturation-largest-first algorithm colours all bipartite
graphs optimally.

Proof. Suppose first that G is connected and has at least one edge; then its
sides A,B are non-empty and uniquely determined (up to renaming). The first
vertex v1 is chosen arbitrarily, say from side A, and receives colour 1. From that
time on, every vertex vi will have neighbours of exactly one colour—neighbours
of colour 1 if vi ∈ B and neighbours of colour 2 if vi ∈ A. Thus, all of A will
eventually receive colour 1, while B will be coloured with colour 2.

If G is not connected, then the saturation-largest-first algorithm will first
colour all vertices of some component before going to the next component. Every
isolated vertex will be coloured with colour 1, while every larger component
needs two colours as we have seen above.

Remark. The saturation-largest-first algorithm can be implemented to run in
time Θ(n +m). A variant of this algorithm colours, for every fixed ε ∈ (0, 1),
almost all graphs G with χ(G) ≤ (1 − ε) log2 |G| optimally. This variant has
running time Θ(m log2 n) (provided that m = Ω(n)).

Similarity-merge heuristic (Dutton, Brigham 1981). If two vertices in
a graph have the same neighbourhood, then they can be coloured with the same
colour in any optimal colouring. The rough idea of the next algorithm is to look
for non-adjacent vertices with as many common neighbours as possible and to
contract them, like in Zykov’s algorithm (but without adding edges).

Definition (Similarity-merge algorithm). Set H0 := G. Recursively for i =
0, 1, . . . , repeat the following steps.

(i) If Hi is complete, stop the recursion and set k := |Hi| = |G| − i.

(ii) Otherwise, let xi, yi be a pair of non-adjacent vertices of Hi with the most
common neighbours.

(iii) Set Hi+1 := Hi/{xi, yi}.

The algorithm then produces a k-colouring by first colouring the last iteration
H|G|−k with k colours and then, recursively for i = |G| − k, |G| − k − 1, . . . , 1,
colour Hi−1 by letting xi and yi inherit the colour of {xi, yi} in Hi, while all
other vertices keep their colours.

CHAPTER 4. COLOURINGS 77

Proposition 4.19. The similarity-merge algorithm colours all bipartite graphs
optimally.

Proof. If G has no edges, then the similarity-merge algorithm will clearly only
need one colour (or zero colours if the graph is empty). We may thus assume
that G has at least one edge and hence χ(G) = 2. We claim that all graphs
H0, . . . ,H|G|−k occurring throughout the algorithm are bipartite and have at
least one edge; this will imply that H|G|−k = H|G|−2 = K2 and thus the algo-
rithm uses two colours.

H0 = G satisfies these conditions by assumption. Inductively for i =
0, . . . , |G| − k − 1, assume that Hi is bipartite and has at least one edge. If all
components of Hi are complete, then a pair of vertices in distinct components
is contracted, which keeps the graph bipartite with at least one edge. Other-
wise, each non-complete component of Hi contains a path of length two whose
end vertices are non-adjacent vertices (because otherwise Hi would contain a
triangle, contradicting the fact that it is bipartite) with common neighbours.
In particular, xi, yi will have at least one common neighbour and thus lie on
the same side of their component. Thus, contracting {xi, yi} keeps the graph
bipartite with at least one edge.

Remark. The similarity-merge algorithm can be implemented to run in time
Θ(n2). A variant of this algorithm colours (with longer, but still polynomial

running time) almost all graphs G with χ(G) ≤ 1
14

√
|G|

log2|G| optimally.

Recursive-largest-first heuristic. The main intuition behind the third and
final heuristic in this section is to look for an independent set S in G (which
will be our first colour class) with as many incident edges as possible. This way,
we decrease the number of edges in G− S as much as possible, which makes it
reasonable to hope that the remaining graph will become edgeless after “few”
steps.

Definition (Recursive-largest-first algorithm). Set H0 := G. Recursively for
i = 0, 1, . . . , repeat the following steps.

(i) If Hi is empty, stop the recursion and set k := i.

(ii) Otherwise, recursively find a maximal set Si = {v1i , . . . , v
si
i } of vertices of

Hi such that each vji

(a) is not adjacent to any vli with l < j;

(b) among all vertices satisfying (a), has the largest number of neighbours
in NHi

({v1i , . . . , v
j−1
i });

(c) among all vertices satisfying both (a) and (b), has the smallest degree
in Hi.

(iii) Set Hi+1 := Hi − Si.

The algorithm then produces a k-colouring with colour classes S0, . . . , Sk−1.

In Step (ii) above, Condition (a) guarantees that Si is independent. Con-
ditions (b) and (c) are supposed to guarantee that we end up with “many”
vertices in Si that send “many” edges to Hi − Si. For the first of these two

CHAPTER 4. COLOURINGS 78

aims, it seems reasonable to pick a vertex with as few “new” neighbours (i.e.
neighbours of vji that are not neighbours of any earlier vli) as possible. For the

second aim, however, we want vji to have as many neighbours as possible. These
antipodal aims are the reason why we (b) first restrict ourselves to vertices with
a maximal number of “already known” neighbours and (c) among those choose
a vertex with as few “new” neighbours as possible.

Proposition 4.20. The recursive-largest-first algorithm colours all bipartite
graphs optimally and can be implemented to run in time O(nm).

Proof. Exercise.

Remark. In empirical tests, the recursive-largest-first algorithm needed (on
average) the least number of colours of the heuristics in this section.

4.7 Edge-colouring

Definition (Edge-colouring, chromatic index). An edge-colouring of a graph G
is a function c : E(G) → S that satisfies c(e) ̸= c(e′) for all distinct edges with
e ∩ e′ ̸= ∅. (In words: adjacent edges have different colours.)

Analogously to (vertex) colourings, we define k-edge-colourings and k-edge-
colourability. The chromatic index χ′(G) of G is defined as

χ′(G) := min{k ∈ N : G is k-edge-colourable}.

Instead of colouring the edges of G, we can also colour the vertices of an
auxiliary graph.

Definition (Line graph). The line graph of a graph G is the graph L(G) with
vertex set E(G), in which distinct e, e′ ∈ E(G) are adjacent if and only if they
intersect.

Every k-colouring of L(G) corresponds to a k-edge-colouring of G and vice
versa. In particular, χ′(G) = χ(L(G)). This fact can be used to prove upper
and lower bounds for the chromatic index that only differ by a constant factor
(as opposed to the bounds we saw for the chromatic number).

u

v

w

x

G

uv

uw

ux

vw

wx

L(G)

Figure 4.9: A k-edge-colouring of a graph G and the corresponding k-colouring
of its line graph L(G).

Proposition 4.21. For every graph G with ∥G∥ ≥ 1, we have ∆(G) ≤ χ′(G) ≤
2∆(G)− 1.

CHAPTER 4. COLOURINGS 79

Proof. The set of edges that are incident with a fixed vertex v ∈ V (G) forms a
clique in L(G). Thus, by Proposition 4.1(i),

∆(G) ≤ ω(L(G)) ≤ χ(L(G)) = χ′(G).

For the upper bound, observe that e = uv ∈ E(G) has (d(u)−1)+(d(v)−1) many
neighbours in L(G) and thus ∆(L(G)) ≤ 2∆(G) − 2. By Proposition 4.8(ii),
this yields χ′(G) = χ(L(G)) ≤ 2∆(G)− 1.

Although Proposition 4.21 already gives us much better control over χ′(G)
than what we know for χ(G), we shall soon see that it is far from best possible.
But first, let us show that for bipartite graphs, the chromatic index lies at the
lower end of the possible spectrum.

Theorem 4.22 (König 1916). If G is bipartite, then χ′(G) = ∆(G).

Proof. Induction on ∥G∥. An edgeless graph is 0-edge-colourable, we may thus
assume that ∥G∥ ≥ 1 and that χ′(G′) = ∆(G′) for all bipartite graphs G′ with
less than ∥G∥ edges. By Proposition 4.21, it suffices to prove that G is ∆(G)-
edge-colourable. Pick any edge e = xy of G. By the induction hypothesis, G−e
is ∆(G− e)-edge-colourable and thus in particular ∆(G)-edge-colourable; fix a
∆(G)-edge-colouring c of G− e.

Both x and y have at most ∆(G)− 1 neighbours in G− e and thus there are
colours α, β ∈ {1, . . . ,∆(G)} such that α is not used for the edges at x, while
β is not used for the edges at y. If α is also not used for the edges at y, then
we can colour e with α and be done. We may thus assume that α is used for
some edge at y, and analogously that β is used for some edge at x; in particular,
α ̸= β. Consider the spanning subgraph Gα,β of G whose edges are precisely
the edges coloured α and β. As c is an edge-colouring, every vertex in Gα,β has
degree zero, one, or two, meaning that each component is either a path or a
cycle.

α
β

α

βα

β

α
β

x ye

P

Figure 4.10: Finding an odd cycle if x and y lie in the same component P of
Gα,β .

Both x and y have degree one in Gα,β and thus lie in components that are
paths of positive length, are they are endpoints of these paths. Suppose first
that they lie in the same component P . Its edge at x is coloured with β, its edge
at y is coloured with α, and the colours alternate on P . This means that P has
even length. But then P+e is an odd cycle in G, a contradiction to the fact that
G is bipartite. Thus, x and y lie in different components of Gα,β , say in Px and

CHAPTER 4. COLOURINGS 80

Py, respectively. If we switch colours α and β in Px, then β is no longer used
for the edges at x, and we can colour e with β to create a ∆(G)-edge-colouring
of G.

Bipartite graphs are not the only graphs with χ′(G) = ∆(G). For instance,
denote by Wk the wheel of length k ≥ 3, that is, a cycle of length k with an
additional vertex that is adjacent to all vertices on the cycle. Then ∆(Wk) =
χ′(Wk) = k.

Examples with χ′(G) > ∆(G) are again odd cycles, for which we have
χ′(G) = ∆(G) + 1. The next theorem tells us that this is in fact the largest
chromatic index that can occur!

Theorem 4.23 (Vizing 1964). ∆(G) ≤ χ′(G) ≤ ∆(G) + 1 for every graph G.

Proof. Induction on ∥G∥. Again, observe that the induction base ∥G∥ = 0 is
trivial and that it suffices to prove that G is (∆(G) + 1)-edge-colourable. For
simplicity, let us use the short notations

� ∆ := ∆(G);

� colouring for a (∆ + 1)-edge-colouring;

� if a colouring is given, α-β-path for a path all whose edges have colours α
and β (where α ̸= β are fixed colours);

� if a colouring is given, we say that colour α is missing at the vertex x if no
edge incident with x has colour α. (Observe that at every vertex, there is
a missing colour, since we use ∆ + 1 colours.)

Like in the proof of Theorem 4.22, we know that for every e = xy ∈ E(G), the
graph G− e has a colouring. We may assume the following.

For every e = xy ∈ E(G) and any colouring of G − e, if colour
α is missing at x and colour β is missing at y, then α ̸= β and
the unique maximal α-β-path starting at x ends in y.

(∗)

Indeed, if α = β or if the α-β-path starting in x did not end in y, we could find
a colouring of G and be done like in the proof of Theorem 4.22.

Fix an edge xy0 and let c0 be a colouring of G − xy0. Let α be a colour
missing at x and let β0 be a colour missing at y0. By (∗), β0 is not missing at
x and thus, there is an edge xy1 with c0(xy1) = β0. Let β1 be a colour missing
at y1. If β1 is also missing at x, we can re-colour xy1 with colour β1 and obtain
a colouring of G− xy0 in which β0 is missing at both x and y0, a contradiction
to (∗). We may thus assume that β1 is not missing at x.

We now let xy2 be an edge with c0(xy2) = β1, let β2 be a colour missing at
y2, and continue until for some k either

� βk is missing at x, or

� βk = βi for some i < k.

Observe that ck : E(G− xyk) → {1, . . . ,∆+ 1} defined by

ck(e) :=

{
βj if e = xyj for 0 ≤ j ≤ k − 1,

c0(e) otherwise

CHAPTER 4. COLOURINGS 81

β
0

β1

β k
−1

x

y0

y1

y2

yk

β
0

β
1

β2x

y0

y1

y2

yk

Figure 4.11: Altering c0 to a colouring of G− xyk.

is a colouring of G− xyk. If βk is missing at x in c0, then βk is missing in ck at
both x and y0, a contradiction to (∗).

We may thus assume that βk is not missing at x, which means that βk = βi

for some i < k. If we apply (∗) to the graph G − xyk and its colouring ck, we
see that the α-βi-path P (with respect to ck) that starts in x ends in yk. The
first edge of P has colour βi and thus is xyi, because α is missing at x (in c0
and hence also in ck) and ck(xyi) = c0(xyi+1) = βi. Analogously, the last edge
of P has colour α. This means that yiP is a yi–yk path in G − {xy0, . . . , xyk}
of odd length.

β
0

β
1

βi

α

β
i

α

x

y0 y1

yi

yk
P

Figure 4.12: Finding the path P using the colouring ck.

Analogously to ck, define a colouring ci of G− xyi by

ci(e) :=

{
βj if e = xyj for 0 ≤ j ≤ i− 1,

c0(e) otherwise

and switch the colours α and βi on yiP to obtain a colouring c′i of G − xyi in
which α is missing at both x and yi, contradicting (∗).

Remark. Vizing’s theorem tells us that every graph G lies in one of only two
classes of graphs—the ones with χ′(G) = ∆(G) (called Class 1) or the ones
with χ′(G) = ∆(G) + 1 (called Class 2). There are only few further results
about which graphs lie in which class. The general problem of determining if a
given graph lies in Class 1 or in Class 2 is NP-hard.

Example. The chromatic index of Kn depends on the parity of n. The cases
n = 1 and n = 2 are trivial. For n ≥ 3 odd, every colour class can consist of no
more than n−1

2 edges, showing that one needs n colours to colour all
(
n
2

)
edges.

CHAPTER 4. COLOURINGS 82

β
0

β
1

β k
−1

α

β
i

α

x

y0 y1

yi

yk
P

β
0

β
1

α

β k
−1

β i

α

βi

x

y0 y1

yi

yk
P

Figure 4.13: Creating a colouring of G from ci.

Since n = ∆(Kn) + 1, Vizing’s theorem proves that χ′(Kn) = n for n odd.
Moreover, we have shown that in every n-edge-colouring of Kn, each colour is
used for exactly n−1

2 edges. Thus, each colour is missing at precisely one vertex.
For n ≥ 4 even, delete a vertex x from Kn to obtain a Kn−1. Colour its

edges with colours 1, . . . , n−1 as above and suppose that each colour i is missing
at vi. Now we can colour each remaining edge xvi with colour i and thus show
χ′(Kn) = n− 1 = ∆(Kn).

4.8 List colouring

Graph colouring occurs in many applications, e.g. in scheduling problems, where
each colour class corresponds to a time slot. In many cases, there are further
restrictions like that every vertex/edge has some colours that are forbidden a
priori (in the sense that e.g. the event corresponding to a specific vertex/edge
has to take place within a certain time range).

Definition (List colouring, choice number). Let G be a graph and suppose
that for each vertex v ∈ V (G), we are given a non-empty set Sv. We say that
a (vertex-)colouring c of G is a colouring from the lists Sv if c(v) ∈ Sv for every
vertex v.

For k ∈ N, we say that G is k-choosable (or k-list-colourable) if, for every
family of lists of size (at least) k, G has a colouring from these lists. The choice
number (or list-chromatic number) ch(G) of G is defined as

ch(G) := min{k ∈ N : G is k-choosable}.

The corresponding notions for edge-colourings are defined analogously. The
smallest integer k for which G is k-edge-choosable is called the choice index (or
list-chromatic index) of G and is denoted by ch′(G).

Remark. A k-colouring can be viewed as a colouring from identical lists of size
k. Therefore, every k-choosable graph is in particular k-colourable, which means
that χ(G) ≤ ch(G). Analogously, we have χ′(G) ≤ ch′(G).

Example. Consider the graph K3,3. On both sides, let one vertex have the list
{1, 2}, one vertex list {1, 3}, and one vertex list {2, 3} (see Figure 4.14).

The vertices in A cannot have the same colour, since the three lists have
empty intersection. No matter which colours are chosen for the vertices in A,

CHAPTER 4. COLOURINGS 83

{1, 2} {1, 2}

{1, 3} {1, 3}

{2, 3} {2, 3}

Figure 4.14: An assignment of lists to the vertices of K3,3 that does not allow
a colouring.

some vertex in B will have both colours in its list already used for the vertices
in A. Therefore, K3,3 is not 2-choosable.

If we have lists of size 3 instead, then either two lists of vertices in A intersect
or no such lists intersect. In the former case, we can colour the two corresponding
vertices with their common colour; for the third vertex in A use any colour from
its list. This way, we have only used two colours for the vertices in A, meaning
that each vertex in B still has one colour in its list that we can colour it with.
Thus, we find a colouring of K3,3 from the given lists.

Otherwise, the lists of vertices in A are pairwise disjoint. We have 27 different
possibilities to colour the vertices in A, with the set of colours being different
in all 27 cases. Each vertex in B has a list of size three, and so at most one of
the 27 colourings will exhaust the list for any vertex. In particular, for at least
24 of these colourings we can extend them to a colouring of the whole of K3,3

from the given lists.
This shows that ch(K3,3) = 3.

Some results about bounds on the chromatic number immediately extend to
the choice number, with similar proofs.

Proposition 4.24. For every graph G, we have ch(G) ≤ 1 + maxH⊆G δ(H).

Theorem 4.25. If G is connected and neither complete nor an odd cycle, then
ch(G) ≤ ∆(G).

Proposition 4.24 and Theorem 4.25 are the counterparts of Corollary 4.11(i)
and Theorem 4.13 (Brooks’ theorem) for the choice number. Their proofs are
left as an exercise.

While these results seem to indicate similarities between the chromatic num-
ber and the choice number, the two values can lie arbitrarily far apart.

Theorem 4.26 (Alon 1993). There exists a function f : N → N such that for
all k ∈ N and all graphs G with average degree d(G) ≥ f(k), we have ch(G) ≥ k.

Observe that Theorem 4.26 implies that ch(Kf(k),f(k)) ≥ k, hence there
exist bipartite graphs with arbitrarily large choice number!4 The proof of The-
orem 4.26 uses probabilistic arguments. We omit the proof in this course.

There is another result that we have already seen for the chromatic number,
that still holds for the choice number: the Five Colour Theorem.

Theorem 4.27 (Thomassen 1994). Every planar graph is 5-choosable.
4One can also directly construct bipartite graphs with arbitrarily large choice number

(exercise).

CHAPTER 4. COLOURINGS 84

Proof. We prove the following stronger statement.

If G is a plane graph whose outer face is bounded by a cycle C =
v1v2 . . . vkv1 and whose inner faces are bounded by triangles,
then for all lists with Sv1 = {1}, Sv2 = {2}, |Svi | ≥ 3 for
3 ≤ i ≤ k, and |Sv| ≥ 5 for v ∈ V (G − C), there is a colouring
of G from these lists.

(∗)

First observe that (∗) indeed implies the theorem. For if G is maximally planar
with at least three vertices,5 then any drawing of G is a triangulation by Propo-
sition 3.4. In particular, G has the structure required in (∗). If we delete all but
one colour each from the lists Sv1 and Sv2 , then (∗) states that G is colourable
from these lists, and thus also from the original lists.

We prove (∗) by induction on |G|. The case |G| = 3 is trivial, because then
G is a triangle and we can colour c(v1) = 1, c(v2) = 2, and pick c(v3) from
Sv3 \ {1, 2} ≠ ∅. Now suppose that |G| ≥ 4 and that (∗) holds for all smaller
plane graphs.

Suppose that there is an index 2 ≤ i ≤ k − 2 such that vivk ∈ E(G). Then
{vi, vk} separates G into two parts; let G1 be the part that contains v1, v2, and
let G2 be the other part. The induction hypothesis for G1 yields a colouring c1
of G1. In G2, reduce the lists Svi and Svk to {c1(vi)} and {c1(vk)}, respectively,
and apply the induction hypothesis to G2 with vi and vk in the roles of v1 and
v2. Together, c1 and c2 form a colouring of G from the original lists.

v1

v2

vi

vk

G1

G2

Figure 4.15: If there is an index 2 ≤ i ≤ k − 2 with vivk ∈ E(G), then we can
inductively first colour G1 from the lists and then colour G2 from the lists so
that the colours at ci and ck coincide.

Now suppose that there is no such index i. Then we can denote the neigh-
bours of vk in V (G − C) by u1, . . . , uj so that v1, u1, . . . , uj , vk−1 lie around
vk in that order. Since every inner face of G is bounded by a triangle, P :=
v1u1 . . . ujvk−1 is a path in G and C ′ := (C ∪ P) − vk is a cycle in G. Pick
any two colours α, β from Svk

\ {1} (this is possible as Svk has at least three
elements). Delete α and β from each list Sul

with 1 ≤ l ≤ j, this leaves at least
three elements in each such list. This means that (∗) is applicable to G − vk;
let c be the colouring provided by (∗). Amongst the neighbours of vk, we know
that neither v1 nor any ul can be coloured with α or β. Thus, we can pick any
colour in {α, β}\{c(vk−1)} ≠ ∅ for vk so as to extend c to a colouring of G from
the original lists.

5The theorem is trivial for graphs with fewer vertices, and if the theorem is true for all
maximally planar graphs, then it is automatically true for all planar graphs.

CHAPTER 4. COLOURINGS 85

v1

vk−1

vk

P

Figure 4.16: If vk is not adjacent to any vi with 2 ≤ i ≤ k − 2, then its
neighbours form a v1–vk−1 path P . Colour G− vk from the lists, not using two
fixed colours α, β ∈ Svk \ {1} for the internal vertices of P . Then at least one
of α, β is available for vk.

For 4-choosability, the above proof fails (where?). In fact, there exist planar
graphs with choice number 5, the smallest known example having 63 vertices.

Recall that the chromatic number and the choice number can be arbitrarily
far apart by Theorem 4.26. It might be surprising that not a single example is
known for which the chromatic index and the choice index are not identical ! It
is indeed conjectured that these two values are always the same.

List Colouring Conjecture. Every graph G satisfies χ′(G) = ch′(G).

The List Colouring Conjecture is still wide open. For bipartite graphs, the
conjecture is known to be true.

Theorem 4.28 (Galvin 1995). If G is bipartite, then χ′(G) = ch′(G).

Proof. Recall that χ′(G) = ∆(G) =: ∆ by Theorem 4.22; fix a ∆-edge-colouring
c of G. We need to prove that G is ∆-edge-choosable. To that end, suppose
that lists Se of size ∆ are given.

We define a directed auxiliary graph D with vertex set E(G) as follows. Let
ee′ be an edge of the line graph of G and suppose that c(e) < c(e′). We let
(e, e′) ∈ E(D) if e and e′ meet in A, and (e′, e) ∈ E(D) if they meet in B.

u

v

w

x

y

z

1

3 2

1
3

2

A B

G

uxuy

vy

vz wz

vx

D

Figure 4.17: Constructing the directed graph D from the graph G.

We claim that D has the following property.

For every e ∈ V (D), we have d+(e) ≤ |Se| − 1. Furthermore,
for every induced subgraph D′ ⊆ D, there is an independent set
U ⊆ V (D′) such that each vertex in D′−U sends an edge to U .

(∗)

CHAPTER 4. COLOURINGS 86

If e = ab ∈ E(G) is fixed (with a ∈ A and b ∈ B), then (e, e′) ∈ E(D)
implies that either e ∩ e′ = {a} and c(e) < c(e′) (for which there are ∆ − c(e)
possibilities) or e ∩ e′ = {b} and c(e) > c(e′) (with c(e) − 1 possibilities). This
implies the first part of (∗), because |Se| = ∆.

For the second part, suppose that D′ is given and let G′ be the spanning
subgraph of G with edge set V (D′). For every v ∈ V (G′), define an order <v on
N(v) by letting u <v w whenever (vw, vu) ∈ E(D′). By Theorem 2.4, G′ has
a stable matching with respect to this set of preferences. Any stable matching
corresponds to an independent set U in D′ (because U is a matching) such that
each vertex in D′ − U sends an edge to U (because U is stable). This proves
the second part of (∗).

We will now prove by induction on |D| that every directed graph satisfy-
ing (∗) can be coloured from the lists Se. The induction basis |D| = 0 is trivial,
so suppose that |D| ≥ 1. By (∗), the lists Se are non-empty; pick any colour α
that occurs in some list. Let D′ be the subgraph of D spanned by all e ∈ V (D)
for which α ∈ Se. Apply (∗) and colour all elements of the independent set U
with α. Now consider the graph D′′ = D−U with lists S′′

e = Se \{α}; we claim
that (∗) holds for D′′.

The second part of (∗) holds forD′′, because it holds forD and every induced
subgraph of D′′ is also an induced subgraph of D. For the first part of (∗), let
e ∈ V (D′′). If e ∈ V (D′ − U), we have |S′′

e | = |Se| − 1 (since we deleted the
colour α from this list), but also d+D′′(e) ≤ d+D(e) − 1, because e sends an edge
to U by (∗). For e ∈ V (D −D′), we have |S′′

e | = |Se| and d+D′′(e) ≤ d+D(e). In
either case, the first part of (∗) is true for D′′, because it was true for D.

By the induction hypothesis, we can colour D′′ from the modified lists. Since
this does not use the colour α, this yields a colouring of D from the original lists,
which corresponds to an edge-colouring of G from the lists Se, as desired.

Chapter 5

Euler tours and Hamilton
cycles

Definition (Walks). A sequence W = v0, e0, v1, e1, . . . , vk−1, ek−1, vk of (not
necessarily distinct) vertices vi and edges ei in a graph or multigraph G is
called walk in G if ei = vivi+1 for each i = 0, . . . , k − 1. The walk is closed if
v0 = vk. We say that an edge e is traversed l times by W if e = ei for precisely
l distinct values of i.

5.1 Euler tours

Definition (Euler walks, Euler tours). An Euler walk in a (multi-)graph G is
a walk that traverses each edge of G exactly once. A closed Euler walk is called
Euler tour. If G has an Euler tour, we also call G Eulerian.

Theorem 5.1 (Euler 1736, Hierholzer 1873). A connected (multi-)graph G is
Eulerian if and only if all vertices have even degrees. G has an Euler walk if
and only if at most two vertices have odd degrees.

Proof. If G has an Euler tour W , then a vertex v that appears j times in W
(where we count v = v0 = vk as one occurrence) has degree 2j. Thus, all vertices
have even degrees. Vice versa, suppose that all vertices have even degrees and
let W = v0, . . . , vk be a longest walk in G that does not traverse any edge more
than once. By the maximality of W , it traverses all edges at vk. Since d(vk)
is even, this means that W is closed. If W were not an Euler tour, then there
would be edges that it does not traverse. As G is connected, this means that
there is some edge e that is not traversed by W and that is incident with some
vertex of W , say e = uvi. But then

W ′ := u, e, vi, ei, vi+1, . . . , vk−1, ek−1, vk, e0, v1, . . . , vi

would be a longer walk than W , a contraction. Thus, W is an Euler tour.
If G has an Euler walk W , then either W is closed and hence all vertex

degrees are even (as above) or W is not closed and all vertices apart from the
end vertices of W have even degrees. Vice versa, suppose that at most two
vertex degrees are odd. Then by Proposition 0.1, either all vertices have even

87

CHAPTER 5. EULER TOURS AND HAMILTON CYCLES 88

degrees—in which case we have already seen that G has an Euler tour, which is
in particular an Euler walk—or precisely two vertices u, v have odd degrees. In
this case, add an edge e = uv to G to obtain a multigraph G′ (adding e might
create a new double edge) in which all vertices have even degrees. Then G′ has
an Euler tour W . As W is closed, we may assume that it starts with u, e, v.
Deleting the first two elements from the sequence results in an Euler walk in G
(starting at v and ending at u).

Clearly, adding isolated vertices to an Eulerian graph does not change any-
thing, as we only ask for all edges to be traversed.1

By Theorem 5.1, we can easily check in linear time whether a given graph
G is Eulerian. To this end, we in particular need to check connectedness (af-
ter deleting isolated vertices), which can e.g. be done by depth first search or
breadth first search.

BEGIN
Eulerian := TRUE;
H := G;
FOR (v ∈ V (G)){

IF (d(v) is odd){
Eulerian := FALSE;

}
IF (d(v) = 0){

H := H − v;
}

}
If (Connected(H) = FALSE){

Eulerian := FALSE;
}
RETURN Eulerian;

END

We can also find an Euler tour algorithmically, along the lines of the proof
of Theorem 5.1. Suppose that we have already checked that G is Eulerian. The
main idea is to start with any closed walk W that traverses each edge at most
once and as long as this walk is not yet an Euler walk, extend W by adding a
closed walk in the remaining graph that starts (and ends) at a vertex that also
lies on W . Suppose first that we already know which vertex v to start from.

PROCEDURE TOUR(G,v)
BEGIN

w0 := v;
t := 0;
WHILE (t = 0 OR wt ̸= v){

Find wt+1 ∈ N(wt);
et := wtwt+1;
G := G− et;
t := t+ 1;

}
T := w0e0w1 . . . wt−1etwt;

END

1Some sources might require an Eulerian graph to be connected, but this makes virtually
no difference.

CHAPTER 5. EULER TOURS AND HAMILTON CYCLES 89

The main program will now recursively apply this procedure. For simplicity,
assume that a vertex s in G is given from which we start our Euler tour.

BEGIN
R := G;
W := s;
WHILE (E(R) ̸= ∅){

FIND (w ∈ V (W) : dR(w) ̸= 0);
TOUR(R,w);
W := sWwTwWs;
R := R− E(T);

}
END

This algorithm is due to Hierholzer and runs in time Θ(n+m). A very similar
algorithm also works if G has two vertices with odd degrees: we just have to
find a path between these vertices first, and then recursively apply Tour(R,w)
as above.

Note that, TOUR(G, v) will always find a closed walk as long as all degrees
in G are even. Indeed, during the WHILE loop the leading vertex of the path
wt will always have odd degree in the current graph G, since we delete one edge
incident to wt in steps t and t + 1. In particular, wt always has at least one
neighbour in G. Since the number of edges in G at the start is finite, the loop
must terminate, in which case we must have that wt = v.

5.2 Hamilton cycles

Definition (Hamilton cycles, Hamilton paths). A Hamilton cycle in a graph G
is a cycle that is a spanning subgraph of G (in other words, a cycle in G that
visits all vertices). A graph that has a Hamilton cycle is called hamiltonian.

A Hamilton path is defined analogously to a Hamilton cycle.

While identifying Eulerian graphs is easy (even possible in linear time), the
corresponding problem for hamiltonian graphs is much harder.

Remark. The problem of determining whether a given graph G is hamiltonian
is NP-complete.

5.2.1 Sufficient conditions for Hamilton cycles

What properties can guarantee hamiltonicity of a graph? Large degrees might be
a sensible candidate, but any constant minimum degree will not even guarantee
connectedness, let alone a Hamilton cycle. Thus, any such sufficient condition
has to feature a lower bound that depends on the size of the graph.

Theorem 5.2 (Dirac 1952). Every graph G with |G| ≥ 3 and δ(G) ≥ 1
2 |G| is

hamiltonian.

Proof. Observe that G is connected, for otherwise there would be a component
with at most 1

2 |G| vertices and thus δ(G) < 1
2 |G|.

CHAPTER 5. EULER TOURS AND HAMILTON CYCLES 90

Let P = v0 . . . vk be a longest path in G. We first aim to find a cycle
C in G with the same vertex set as P . By the maximality of P , we have
N(v0) ⊆ {v1, . . . , vk} and N(vk) ⊆ {v0, . . . , vk−1}. Let

S := {vi : vi+1 ∈ N(v0)}

be the set of predecessors (on P) of neighbours of v0. We know that both
N(vk) and S are contained in {v0, . . . , vk−1} and that |N(vk)| ≥ 1

2 |G| and
|S| = |N(v0)| ≥ 1

2 |G|. Since |{v0, . . . , vk−1}| = k < |G|, the pigeonhole principle
yields that N(vk) ∩ S ̸= ∅. Let vi ∈ N(vk) ∩ S. Then

C = (P − vivi+1) + v0vi+1 + vivk

is the desired cycle.

v0
vi

vi+1

vk

Figure 5.1: Finding a cycle with the same vertex set as the longest path in G.

If V (C) ̸= V (G), then there exists a vertex x ∈ V (G)−V (C) that is adjacent
to some vertex y ∈ V (C), because G is connected. Adding xy to C and deleting
one of the two edges of C incident with y creates a path that is longer than P ,
a contradiction. Therefore, C is a spanning subgraph of G and thus a Hamilton
cycle.

Alternative proof. Among all orderings of V (G), pick σ0 = (v1, . . . , vn) with

k(σ0) := |E(G) ∩ {v1v2, v2v3, . . . , vn−1vn, vnv1}|

maximal. We aim to prove that k(σ0) = n; then v1v2 . . . vnv1 is a Hamilton
cycle and we are done.

Suppose, for contradiction, that k(σ0) < n. Without loss of generality, we
may assume that vnv1 /∈ E(G). Let S := {vi : vi+1 ∈ N(v1)}. Neither S
nor N(vn) contains vn and thus, the pigeonhole principle implies that there
exists some vi ∈ N(vn) ∩ S, because |S| , |N(vn)| ≥ 1

2n. Also observe that
2 ≤ i ≤ n − 2, because v1 /∈ N(vn), while vn−1 /∈ S. Consider the ordering
σ1 := (v1, . . . , vi, vn, vn−1, . . . , vi+1).

Among all edges counted in k(σ0), we might only lose vivi+1 (if this was an
edge) for k(σ1). On the other hand, we gain the edges vi+1v1 and vivn. Thus,
k(σ1) > k(σ0), a contradiction to the choice of σ0.

Remark. Dirac’s theorem is best possible in the sense that any smaller (inte-
gral) minimum degree does not suffice. For any integers d, n with 1 ≤ d < 1

2n,
the complete bipartite graph Kd,n−d is an example of a graph with minimum
degree d and no Hamilton cycle. A different example would be the union of two
complete graphs Kd+1 and Kn−d that meet in a single vertex.

CHAPTER 5. EULER TOURS AND HAMILTON CYCLES 91

vnv1

vi vi+1
σ0

vi+2

vi+1v1

vi vn

vn−1

σ1

Figure 5.2: Constructing σ1 from σ0.

d n− d
Kd+1 Kn−d

Figure 5.3: Two graphs on n = 11 vertices with minimum degree d = 5 < 1
2n,

but no Hamilton cycle (why?).

CHAPTER 5. EULER TOURS AND HAMILTON CYCLES 92

The degree condition in Dirac’s theorem can in fact be relaxed. Instead of
asking each vertex to have large degree, it is enough to require pairs of vertices
to have large sums of their degrees.

Theorem 5.3 (Ore 1960). Let G be a graph with |G| ≥ 3 and suppose that
d(x) + d(y) ≥ |G| for all distinct, non-adjacent vertices x, y of G. Then G is
hamiltonian.

Proof. Exercise.

Remark. Every graph that satisfies the conditions of Dirac’s theorem also sat-
isfies the conditions of Ore’s theorem. Thus, Theorem 5.3 implies Theorem 5.2.

Theorem 5.3 is again best possible: The second example in Figure 5.3 shows
that there are non-hamiltonian graphs G with d(x) + d(y) = |G| − 1 for any
two non-adjacent vertices x, y. Observe that said example is not hamiltonian
for any d from 1 up to n− 2. (For d = 1 or d = n− 2, the example reduces to
a complete graph on n− 1 vertices plus one last vertex that has degree one.)

Another obvious candidate for ensuring hamiltonicity is large connectivity.
Dirac’s theorem, together with the trivial fact that δ(G) ≥ κ(G), tells us that
every ⌈ 1

2n⌉-connected graph G on n vertices is hamiltonian. Again, this bound
is best possible, as shown by the first example in Figure 5.3 for d = ⌈ 1

2n⌉ − 1.
Interestingly, if we compare the connectivity of G with another graph con-

stant, we find a surprising further sufficient condition for a Hamilton cycle.

Theorem 5.4 (Chvátal, Erdős 1972). Every graph G with at least three vertices
and κ(G) ≥ α(G) is hamiltonian.

Proof. If α(G) = 1, then G is complete (with at least three vertices) and hence
hamiltonian. We may thus assume that κ(G) ≥ α(G) ≥ 2.

Then G contains a cycle by Proposition 1.8. Let C be a longest cycle in
G. If C is not a Hamilton cycle, pick a vertex v in G − C. By the fan ver-
sion of Menger’s theorem (Theorem 1.7(iii)), the maximal v–V (C) fan consists
of k ≥ κ(G) paths P1, . . . , Pk. Denote their end vertices on C by v1, . . . , vk,
respectively. If for some i ̸= j, vi and vj are adjacent on C, then

(C ∪ Pi ∪ Pj)− vivj

would be a longer cycle than C, a contradiction. Thus, no two vertices vi, vj
are adjacent on C.

vi

vj
v

C
Pi

Pj

Figure 5.4: Constructing a longer cycle if vi and vj are adjacent on C.

For each i, let wi be the neighbour of vi on C in some fixed direction. Then
v1, . . . , vk, w1, . . . , wk are pairwise distinct. If v were adjacent to any wi, then

CHAPTER 5. EULER TOURS AND HAMILTON CYCLES 93

we could increase the v–V (C) fan by adding the edge vwi as a path. By the
maximality of our fan, no such edge exists. But {v, w1, . . . , wk} cannot be an
independent set, because it has size k + 1 > κ(G) ≥ α(G). Thus, some vertices
wi, wj are adjacent (in G, not in C). Now

(C ∪ Pi ∪ Pj) + wiwj − viwi − vjwj

is a longer cycle than C, again a contradiction.

vi

wi

vjwj

v

C

Pi

Pj

Figure 5.5: Constructing a longer cycle if wi and wj are adjacent.

Remark. Theorem 5.4 is stronger than Theorem 5.3: Every graph G with at
least three vertices and d(x) + d(y) ≥ |G| for all distinct non-adjacent vertices
x, y also satisfies κ(G) ≥ α(G) (exercise).

Theorem 5.4 is best possible in the sense that there are non-hamiltonian
graphs G with α(G) = κ(G) + 1, e.g. the complete bipartite graph Kr,r+1.

Finally let us mention another classical result. To this end, we need the
following definition.

Definition (Powers of a graph). For a graph G and a positive integer k, we
define the k-th power Gk of G as the graph on V (G) with edge set

E(Gk) := {xy : x, y have distance at most k in G}.

Theorem 5.5 (Fleischner 1974). The square G2 of a 2-connected graph G is
hamiltonian.

5.2.2 Hamiltonian sequences

Ore’s theorem (Theorem 5.3) gives a sufficient condition for hamiltonicity in
terms of vertex degrees. But what happens if we only look at the list of degrees
in a graph and forget about which vertex had which degree? Will we still be
able to find a nice condition, preferably weaker than the condition “all degrees
are larger than 1

2 |G|” from Dirac’s theorem?

Definition (Degree sequence, hamiltonian sequences). Given a graph G on n
vertices, let v1, . . . , vn be an ordering of V (G) such that d(v1) ≤ · · · ≤ d(vn).
Then we call d(v1), . . . , d(vn) the degree sequence of G.

A sequence a1, . . . , an of non-negative integers with a1 ≤ · · · ≤ an ≤ n − 1
is called hamiltonian if every graph on n vertices with pointwise larger degree
sequence (that is, d(vi) ≥ ai for each i) is hamiltonian.

CHAPTER 5. EULER TOURS AND HAMILTON CYCLES 94

The next result characterises hamiltonian sequences.

Theorem 5.6 (Chvátal 1972). Let n ≥ 3. A sequence a1, . . . , an of non-negative
integers with a1 ≤ · · · ≤ an ≤ n−1 is hamiltonian if and only if for every i < n

2
with ai ≤ i, we have an−i ≥ n− i.

Observe that Theorem 5.6 does not say anything about the sizes of an/2 (if
n is even) and an, apart from the condition 0 ≤ a1 ≤ · · · ≤ an ≤ n− 1.

Proof. Suppose first that a1, . . . , an satisfies the above property. We prove by
induction on

(
n
2

)
−∥G∥, that every graph G on n vertices with degree sequence

pointwise larger than a1, . . . , an is hamiltonian. The induction base ∥G∥ =
(
n
2

)
is trivial, because every complete graph on n ≥ 3 vertices contains a Hamilton
cycle.

For the induction step, suppose that G is not complete. Pick non-adjacent
vertices x, y with d(x) ≤ d(y) and d(x) + d(y) as large as possible. The degree
sequence of G+ xy is pointwise larger than that of G, and thus also pointwise
larger than a1, . . . , an. By the induction hypothesis, G+xy contains a Hamilton
cycle C. If xy /∈ E(C), then C is a Hamilton cycle of G and we are done. We
may thus assume that C contains xy. In other words, C − xy is a Hamilton
path in G from x to y, say C − xy = x1 . . . xn (with x1 = x and xn = y). Like
in the proof of Dirac’s theorem, we find a Hamilton cycle of G as soon as N(y)
and S := {xi : xi+1 ∈ N(x)} are not disjoint, which is in particular the case if
d(x) + d(y) ≥ n. We may thus assume that N(y) ∩ S = ∅, which implies

d(x) + d(y) < n, hence in particular d(x) <
n

2
.

Let v be a vertex in S, then it is not adjacent to y. If d(v) > d(x), this would
contradict the maximality of d(x) + d(y), hence all vertices in S have degree at
most d(x). This means that there are at least |S| = d(x) many vertices in G
with degree at most d(x). In other words, if we set i := d(x), then i < n

2
and ai = d(vi) ≤ i. This implies d(vn−i) = an−i ≥ n − i, i.e. G has at least
i+ 1 = d(x) + 1 vertices of degree at least n− i = n− d(x). At least one such
vertex, call it z, is not adjacent to x. But then d(x) + d(z) ≥ n > d(x) + d(y),
contradicting the choice of x, y. This proves that G has a Hamilton cycle. By
induction, a1, . . . , an is hamiltonian.

Vice versa, suppose that a1, . . . , an is an integer sequence and that for some
i < n

2 , both ai ≤ i and an−i ≤ n− i− 1. Let Hn,i be the graph on {v1, . . . , vn}
that is the (edge-disjoint) union of a Kn−i on {vi+1, . . . , vn} and a Ki,i with
sides {v1, . . . , vi} and {vn−i+1, . . . , vn}.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

Figure 5.6: The graph H10,4.

Observe that

CHAPTER 5. EULER TOURS AND HAMILTON CYCLES 95

� for 1 ≤ j ≤ i, we have d(vj) = i ≥ ai ≥ aj ;

� for i+ 1 ≤ j ≤ n− i, we have d(vj) = n− i− 1 ≥ an−i ≥ aj ;

� for n− i+ 1 ≤ j ≤ n, we have d(vj) = n− 1 ≥ an ≥ aj .

In other words, the degree sequence

i, . . . , i︸ ︷︷ ︸
i times

, n− i− 1, . . . , n− i− 1︸ ︷︷ ︸
n−2i times

, n− 1, . . . , n− 1︸ ︷︷ ︸
i times

of Hn,i is pointwise larger than a1, . . . , an. But Hn,i is not hamiltonian, because
the set {vn−i+1, . . . , vn} of i vertices separates Hn,i into i+ 1 components (the
isolated vertices v1, . . . , vi and a complete graph on {vi+1, . . . , vn−i}). This
proves that a1, . . . , an is not hamiltonian.

Instead of Hamilton cycles, we could also ask for Hamilton paths.

Definition (Path-hamiltonian sequences). Call a sequence a1, . . . , an of non-
negative integers with a1 ≤ · · · ≤ an ≤ n − 1 path-hamiltonian if every graph
on n vertices with pointwise larger degree sequence has a Hamilton path.

Corollary 5.7. For every n ≥ 1, a sequence a1, . . . , an of non-negative integers
with a1 ≤ · · · ≤ an ≤ n − 1 is path-hamiltonian if and only if for every i ≤ n

2
with ai < i, we have an+1−i ≥ n− i.

Proof. The claim is trivial for n = 1, because the only feasible sequence in that
case is a1 = 0, which is path-hamiltonian (K1 has a Hamilton path) and trivially
satisfies the above condition. We may thus now assume that n ≥ 2.

Let a1, . . . , an be a sequence as in the statement. Denote the sequence
a1 + 1, . . . , an + 1, n by a′1, . . . , a

′
n+1. Observe that n+ 1 ≥ 3 and that

� i ≤ n
2 is equivalent to i < n+1

2 ;

� ai < i is equivalent to a′i ≤ i;

� an+1−i ≥ n− i is equivalent to a′n+1−i ≥ n+ 1− i.

Thus, a1, . . . , an satisfies the degree condition of Corollary 5.7 if and only if
a′1, . . . , a

′
n+1 satisfies the corresponding condition of Theorem 5.6, which is in

turn equivalent to a′1, . . . , a
′
n+1 being hamiltonian.

Suppose that a1, . . . , an satisfies the degree condition and let G be a graph on
n vertices with pointwise larger degree sequence. Define the graph G′ by adding
to G a vertex v that is adjacent to all other vertices. Then the degree sequence
of G′ is pointwise larger than a′1, . . . , a

′
n+1, which means that G′ has a Hamilton

cycle, because a′1, . . . , a
′
n+1 is hamiltonian. Deleting v from the Hamilton cycle

in G′ leaves a Hamilton path in G. Thus, a1, . . . , an is path-hamiltonian.
Vice versa, suppose that a1, . . . , an does not satisfy the degree condition.

Pick a non-hamiltonian graphG′ on n+1 vertices with degree sequence pointwise
larger than a′1, . . . , a

′
n+1 and delete a vertex v of degree a′n+1 = n to obtain a

graph G on n vertices whose degree sequence is pointwise larger than a1, . . . , an.
If G had a Hamilton path P , from u to w say, then uPwvu were a Hamilton cycle
in G′, a contradiction. In particular, a1, . . . , an is not path-hamiltonian.

CHAPTER 5. EULER TOURS AND HAMILTON CYCLES 96

5.2.3 A necessary condition for Hamilton cycles

Every hamiltonian graph has to be connected, even 2-connected, because its
Hamilton cycle is a 2-connected spanning subgraph. In the proof of Chvátal’s
theorem, we saw a slightly more general necessary condition: Whenever we
delete i vertices, the remaining graph is not allowed to have more than i com-
ponents. This inspires the following concept.

Definition (Toughness). For a real number t > 0, we say that a graph G is
t-tough if, for every set S ⊆ V (G) that separates G, the graph G − S has at

most |S|
t components.

As we mentioned above, every hamiltonian graph is 1-tough, but the converse
does not hold: Not every 1-tough graph is hamiltonian (exercise). This raises
the question whether t-toughness for some fixed value of t implies hamiltonicity.

Toughness Conjecture (Chvátal 1973). There exists t > 0 such that every
t-tough graph with at least three vertices is hamiltonian.

Since 1-toughness is not enough, the value t from the Toughness Conjecture
would have to be larger than 1. In fact, the Toughness Conjecture has long
been expected to be true for t = 2, which was disproved in 2000 by Bauer,
Broersma, and Veldman. Their construction is based on the graph L depicted
in Figure 5.7.

x

y

L

Figure 5.7: The graph L used to construct a non-hamiltonian 2-tough graph.

For every positive integer k, denote by Gk,2k+1 the graph obtained by the
following construction. Take the disjoint union of a complete graph Kk and
2k+1 copies L1, . . . , L2k+1 of L, with xi, yi being the copies of x, y in Li. Then
connect the vertex set {x1, . . . , x2k+1, y1, . . . , y2k+1} by a clique and add all
edges between the copy of Kk and the copies of L.

Bauer, Broersma, and Veldman prove that Gk,2k+1 is 9k+4
4k+3 -tough, but does

not contain a Hamilton cycle. In particular, the graph G2,5 is still the smallest
known non-hamiltonian 2-tough graph, with 42 vertices. Furthermore, by letting
k tend to infinity, we see that the Toughness Conjecture can only by true for
t ≥ 9

4 .

Chapter 6

Extremal graph theory

The general theme of extremal graph theory can be summarised in the following
way: If we are looking for a specific local substructure, e.g. a fixed subgraph or
minor, how large does some global parameter of a graph G on n vertices, e.g.
d(G), κ(G), or χ(G), have to be in order to enforce this substructure in G? Vice
versa, which graphs on n vertices have the largest value of the global parameter
without containing the substructure?

6.1 Subgraphs

Definition (Extremal graphs). Let H be a fixed graph and n be a positive
integer. A graphG on n vertices is called extremal for n andH ifH ̸⊆ G and ∥G∥
is largest possible under this condition. In this case, we write ex(n,H) := ∥G∥.

Clearly, every extremal graph for n and H is in particular edge-maximal
without H as a subgraph. The converse is false. For instance, a cycle on five
vertices is edge-maximal without a triangle, but not extremal: The complete
bipartite graph K2,3 has more edges and is also triangle-free.

For general n, reasonable candidates for extremal triangle-free graphs are
complete bipartite graphs. If we want to maximise the number of edges, then
we should additionally have sides of (almost) same size, i.e. K⌊n

2 ⌋,⌈n
2 ⌉. More gen-

erally, if we consider graphs without a Kr+1, the following graphs are reasonable
candidates for extremal graphs.

Definition (Complete r-partite graphs, Turán graphs). Given n, r ∈ N with
r ≥ 1, let V1, . . . , Vr be disjoint sets. A graph G on vertex set V1 ∪ · · · ∪ Vr is
called r-partite with sides V1, . . . , Vr if each Vi is independent in G. (Observe
that this is equivalent to being r-colourable with colour classes V1, . . . , Vr.) If
moreover all vertices in distinct Vi’s are adjacent, we call G complete r-partite.
A complete r-partite graph in which all sides have size s is denoted by Kr

s . We
call a graph complete multipartite if it is complete r-partite for some r.

Suppose that V1, . . . , Vr are disjoint with

|V1|+ · · ·+ |Vr| = n and |V1| ≤ · · · ≤ |Vr| ≤ |V1|+ 1.

Then the complete r-partite graph with sides V1, . . . , Vr is called Turán graph
and is denoted by T r(n).

97

CHAPTER 6. EXTREMAL GRAPH THEORY 98

V1V2

V3 V4

Figure 6.1: The Turán graph T 4(10).

Note that T r(n) is also defined for n < r, in which case the sets V1, . . . , Vr−n

will be empty and T r(n) = Kn.

Theorem 6.1 (Turán 1941). For all n, r ∈ N with r ≥ 2 and n ≥ 1, the Turán
graph T r−1(n) is the unique extremal graph for n and Kr.

Proof. First observe that Kr ̸⊆ T r−1(n), because T r−1(n) is (r− 1)-colourable,
but Kr is not. Let G be extremal for n and Kr. We aim to prove that G =
T r−1(n), which will imply the theorem.

Let us first prove that G is complete multipartite, which is the case if and
only if “not being adjacent” is a transitive relation on V (G). Suppose, for
contradiction, that there are vertices x, y, z ∈ V (G) with xy, xz /∈ E(G), but
yz ∈ E(G). If d(x) < d(y), then the graph G′ obtained from G− x by adding a
vertex y′ with the same neighbourhood as y has n vertices and

∥G∥ − d(x) + d(y) > ∥G∥

edges and thus contains a Kr, because G is extremal for n and Kr. But this Kr

cannot contain both y and y′, because these vertices are not adjacent. Hence
the Kr in G′ gives rise to a Kr in G, a contradiction.

yy′

N(y)

G− x
G′

Figure 6.2: Constructing the graph G′ if d(x) < d(y).

Thus, d(x) ≥ d(y) and analogously also d(x) ≥ d(z). Now the graph G′′ ob-
tained from G−y−z by adding two vertices x′, x′′ with the same neighbourhoods
as x has n vertices and

∥G∥ − (d(y) + d(z)− 1) + 2d(x) > ∥G∥

CHAPTER 6. EXTREMAL GRAPH THEORY 99

edges (observe that the edge yz that we deleted is counted both in d(y) and in
d(z)) and thus contains a Kr, because G is extremal. Again, this gives rise to
a Kr in G, a contradiction.

x

x′

x′′

N(x)

G− y − z
G′′

Figure 6.3: Constructing the graph G′′ if d(x) ≥ d(y), d(z).

This means that G is complete k-partite for some k. Since Kr ̸⊆ G, we
have k < r. Suppose first that k ≤ r − 2. If any side of G contains (at least)
two vertices, we could add an edge between them without creating a Kr, a
contradiction. Thus, n = k ≤ r − 2 and G = Kn = T r−1(n).

It remains to consider the case k = r − 1. Denote the sides of G by
V1, . . . , Vr−1, ordered by increasing size. If |Vr−1| ≥ |V1| + 2, then moving
one vertex from Vr−1 to V1 would increase the number of edges while keeping
the graph (r − 1)-partite, and thus in particular without a Kr. This would
contradict G being extremal for n and Kr. Thus, G = T r−1(n) as desired.

Remark. Turán’s theorem in particular implies that

ex(n,Kr) =
∥∥T r−1(n)

∥∥ =
1

2

r−1∑
i=1

|Vi| (n− |Vi|) =
1

2

(
n2 −

r−1∑
i=1

|Vi|2
)

=
1

2

(
n2 − (r − 1)

(
n

r − 1

)2

+O(n)

)
=

1

2
n2 r − 2

r − 1
+O(n)

(6.1)

with ex(n,Kr) = 1
2n

2 r−2
r−1 if and only if n is divisible by r − 1.

In other words, we know that a little bit more than 1
2n

2 r−2
r−1 edges in a graph

on n vertices suffice to force Kr as a subgraph. The following result, which we
state without proof, tells us that just εn2 additional edges, no matter how small
ε, guarantee the existence of Kr

s , for any s.

Theorem 6.2 (Erdős, Stone 1946). For all r, s ∈ N and ε > 0 with r ≥ 2 and
s ≥ 1, there exists n0 ∈ N such that every graph G on n ≥ n0 vertices with

∥G∥ ≥ 1

2
n2 r − 2

r − 1
+ εn2

contains Kr
s as a subgraph.

As an immediate corollary of Theorem 6.2, we get that

lim
n→∞

ex(n,Kr
s)(

n
2

) =
r − 2

r − 1
.

CHAPTER 6. EXTREMAL GRAPH THEORY 100

In fact, Theorem 6.2 can be used to determine the asymptotic value of ex(n,H)
for almost all graphs H.

Theorem 6.3 (Erdős, Simonovits 1966). For every graph H with at least one
edge,

lim
n→∞

ex(n,H)(
n
2

) =
χ(H)− 2

χ(H)− 1
.

Proof. Write r := χ(H) and let n ∈ N. Then H ̸⊆ T r−1(n), because T r−1(n)
is (r − 1)-colourable while H is not. On the other hand, we can pick s large
enough so that H ⊆ Kr

s . By (6.1) and Theorem 6.2, we have

r − 2

r − 1
= lim

n→∞

∥∥T r−1(n)
∥∥(

n
2

) ≤ lim inf
n→∞

ex(n,H)(
n
2

) ≤ lim sup
n→∞

ex(n,H)(
n
2

) ≤ r − 2

r − 1
+ 2ε

for every ε > 0. Now ε → 0 proves the theorem.

If H is an edgeless graph, then clearly ex(n,H) = 0 for n ≥ |H|. For
bipartite graphs H, Theorem 6.3 tells us that ex(n,H) = o(n2). It turns out
that for some bipartite graphs, we can make this more precise.

Theorem 6.4. For every integer r ≥ 2, there exist constants c1, c2 > 0 (de-
pending on r) such that

c1n
2− 2

r+1 ≤ ex(n,Kr,r) ≤ c2n
2− 1

r

for every n ∈ N.

Observe that Theorem 6.4 does not state the asymptotic order of ex(n,Kr,r),
only an upper and a lower bound. The lower bound is proved using probabilistic
methods. The upper bound can be proved directly.

Proof of the upper bound. Let G be an extremal graph for n and Kr,r. The
basic idea behind this proof will be to double count the number of subgraphs
K of G are isomorphic to K1,r.

That is, we are counting the number of pairs

{(v,X) : x ∈ V (G), X ⊆ N(v) and |X| = r}.

For each vertex v there are exactly
(
d(v)
r

)
many r−sets X with X ⊆ N(a).

Hence the total number of such pairs is
∑

v∈V (G)

(
d(v)
r

)
.

On the other hand, for each fixed r-set X, since G contains no Kr,r, there
are at most r − 1 vertices v with X ⊆ N(v). Hence we see that∑

v∈V (G)

(
d(v)

r

)
≤ (r − 1)

(
n

r

)
≤ rnr. (6.2)

Hence, it would be useful to bound the left hand side of the above equation
below as a function of the number of edges m of G. A first useful step will be
to note that ∑

v∈V (G)

(
d(v)

r

)
≥

∑
v∈V (G)

(
d(v)

r

)r

− 1,

CHAPTER 6. EXTREMAL GRAPH THEORY 101

where we’ve used that
(
d(v)
r

)
≥
(

d(v)
r

)r
if d(v) ≥ r and d(v)

r < 1 if d(v) ≤ r.

One way to bound this quantity is then to use the power mean inequality,
which is a generalisation of the AM-GM inequality, which says that for any set
{x1, x2, . . . , xt} of positive real numbers and any real numbers i < j(

t∑
k=1

xi
k

t

) 1
i

≤

(
t∑

k=1

xj
k

t

) 1
j

Applying this to the number {d(v) : v ∈ V (G)}, so that t = n, with i = 1
and j = r we see that∑

v∈V (G)

(
d(v)

r

)r

=
n

rr

∑
v∈V (G)

d(v)r

n

≥ n

rr

 ∑
v∈V (G)

d(v)

n

r

≥ n

rr

(
2m

n

)r

≥ n1−r(2m)r

rr

Hence, by (6.2) we see that

rnr ≥ n1−r(2m)r

rr

and re-arranging leads to

||G|| = m ≤ r1+r

2
n2− 1

r ,

and so we can take c2 = r1+r

2 .

Remark. For a tree T (with at least two edges), ex(n, T) is linear in n (exer-
cise). A conjecture by Erdős and Sós states that 1

2 (∥T∥−1)n should be an upper
bound for ex(n, T).

6.2 Minors and topological minors

In contrast to subgraphs, minors and topological minors can be enforced by a
linear number of edges. For this reason, it is convenient to state the correspond-
ing results in terms of the average degree instead of the number of edges.

Proposition 6.5. Let r be a positive integer. Every graph with average degree

at least 2(
r
2) contains a TKr.

Proof. For r ≤ 2, the statement is trivial. We may thus assume that r ≥ 3. We
now prove by induction on k = r, . . . ,

(
r
2

)
that every graph with average degree

at least 2k contains a TX for some graph X with r vertices and k edges.

CHAPTER 6. EXTREMAL GRAPH THEORY 102

For k = r, let G be a graph with average degree d(G) ≥ 2r. Then G contains
a subgraph G′ with δ(G′) > 2r−1 (recursively deleting vertices of degree at most
2r−1 does not decrease the average degree). A longest path P in G′, with first
vertex v say, contains all dG′(v) ≥ 2r−1 + 1 neighbours of v. If w is the last
neighbour of v on P , then vPwv is a cycle of length at least 2r−1 + 2, which is
larger than r. Thus, the claim follows for X being a cycle of length r.

For the induction step, let r < k ≤
(
r
2

)
and suppose that the claim is true

for all smaller values of k. Let G with d(G) ≥ 2k be given. Without loss of
generality, we may assume that G is connected, because every non-connected
graph has a component with average degree at least the average degree of the
full graph. Let U ⊆ V (G) be a largest set with

� U is connected in G and

� d(G/U) ≥ 2k.

Such a set exists, because every singleton satisfies these properties.
We have N(U) ̸= ∅, since G is connected and U ̸= V (G); set H := G[N(U)].

We claim that δ(H) ≥ 2k−1. For if v were a vertex in H of degree dH(v) < 2k−1,
then setting U ′ := U ∪ {v} would result in

∥G/U ′∥ = ∥G/U∥ − (dH(v) + 1) ≥ 2k−1(|G/U | − 1) = 2k−1 |G/U ′| .

(Compared with G/U , we lose precisely the edges from v to other vertices in
H, plus the edge to the contracted vertex U .) Now U ′ would be connected
and d(G/U ′) ≥ 2k, contradicting the maximality of U . Thus, the minimum
degree—and hence also the average degree—of H is at least 2k−1.

v

U
U ′

H

Figure 6.4: If we add a vertex v to U , then any edges from v to other vertices
in H are lost in G/U ′ compared to G/U .

By the induction hypothesis, H contains a TY , where Y is a graph with
r vertices and k − 1 edges. Let x, y be two non-adjacent vertices of Y . The
corresponding vertices vx, vy in TY have neighbours in U and thus can be con-
nected in G via a path through U . Adding this path to the TY yields a TX
with X = Y + xy, concluding the proof.

As a surprising corollary of Proposition 6.5, we deduce a result about con-
nectivity of graphs. In fact, we shall prove a much stronger property.

Definition (Linkability). Let k ∈ N. A graph G with |G| ≥ 2k is called k-
linked if for every choice of distinct vertices s1, . . . , sk, t1, . . . , tk, there exist
disjoint paths P1, . . . , Pk in G such that each Pi is an si–ti path.

CHAPTER 6. EXTREMAL GRAPH THEORY 103

vxvy

U

TY
H

Figure 6.5: Two branch vertices can be connected via a path through U .

Observe that if we set S := {s1, . . . , sk} and T := {t1, . . . , tk}, then k-
connectedness of G would, by Menger’s theorem, give us k disjoint S–T paths.
However, we would not be able to control which vertices are connected by these
paths. Thus, being k-linked is a stronger property than being k-connected.

Proposition 6.6. Let k ∈ N. Every 2(
3k
2)-connected graph G is k-linked.

Proof. Let k and G be fixed as in the statement. The theorem is trivial for
k = 0, so assume that k is positive. By Proposition 6.5 and the fact that
d(G) ≥ δ(G) ≥ κ(G), there is a subgraph K = TK3k of G. Denote by U the
set of branch vertices of K.

Suppose that distinct vertices s1, . . . , sk, t1, . . . , tk in G are given. Since

κ(G) ≥ 2(
3k
2) ≥ 2k, Menger’s theorem gives us a set P of 2k disjoint paths

Q1, . . . , Qk, R1, . . . , Rk such that each Qi is an si–U path and Ri is a ti–U path.
Suppose that we have chosen P so that the number of edges that these paths
have outside K is as small as possible.

Out of the 3k vertices in U , precisely 2k are end vertices of paths in P; let
u1, . . . , uk be the remaining vertices in U . Let Li be the subdivided edge of K3k

in K from ui to the end vertex of Qi in U (in this direction). Denote by vi the
first vertex on Li that lies on any path Q ∈ P. By the choice of P, replacing Q
by QviLiui does not decrease the number of edges these paths have outside K.
This means that viQ ⊆ K and thus Q = Qi. Analogously, the first vertex wi

on the subdivided edge Mi of K
3k in K from ui to the end vertex of Ri in U

that lies on any path in P satisfies wi ∈ Ri.
Now

Pi := siQiviLiuiMiwiRiti

is an si–ti path and all Pi’s are pairwise disjoint, proving that G is k-linked.

si ti

ui

vi wi

Pi

Qi Ri

Li

Mi

Figure 6.6: Rerouting Qi and Ri via ui to obtain an si–ti path Pi.

The bounds in Propositions 6.5 and 6.6 are in fact far larger than necessary.
We now state (without proof) the best bounds known up to date.

CHAPTER 6. EXTREMAL GRAPH THEORY 104

Theorem 6.7 (Komlós, Szemerédi 1996; Bollobás, Thomason 1998). There
exists a constant c > 0 such that, for every r ∈ N, every graph with average
degree at least cr2 contains a TKr.

The quadratic degree is necessary to enforce a TKr: there exist graphs with
average degree 1

8r
2 and no TKr.

Theorem 6.8 (Thomas, Wollan 2005). Let k ∈ N. Every 2k-connected graph
G with d(G) ≥ 16k is k-linked. In particular, every 16k-connected graph is
k-linked.

Let us now consider minors instead of topological minors. Since every topo-
logical minor is also a minor, quadratic average degree is enough to guarantee
an MKr. But in fact, a much smaller degree is already sufficient.

Theorem 6.9 (Kostochka 1982). There exists a constant c > 0 such that, for
every integer r ≥ 2, every graph with average degree at least cr

√
log2 r contains

an MKr. This bound is best possible as a function in r (up to the choice of c).

6.3 Hadwiger’s Conjecture

If χ(G) ≥ cr
√
log2 r + 1, then Corollary 4.11(ii) tells us that G has a subgraph

of minimum degree (and thus also average degree) at least cr
√
log2 r, which in

turn contains an MKr by Theorem 6.9. It is conjectured that in fact a much
smaller chromatic number already suffices to guarantee an MKr.

Hadwiger’s Conjecture (Hadwiger 1943). Let r be a positive integer. Then
every graph with chromatic number at least r contains an MKr.

Remark. If r1 > r2, then Hadwiger’s Conjecture for r = r1 implies the conjec-
ture for r = r2 (exercise).

Let us now look at specific values of r for which the conjecture is known to
be true. The proofs will gradually become more difficult.

r ≤ 3. Hadwiger’s Conjecture is trivial for r = 1 (every graph with non-zero
chromatic number is non-empty; thus each vertex is a K1) and for r = 2 (every
graph with chromatic number at least two has an edge, i.e. a K2). For r = 3,
observe that every cycle in a graph forms an MK3. Thus, the only graphs
without MK3 are forests, which are 2-colourable.

r = 4. For this case of Hadwiger’s Conjecture, we use a structural result
about graphs that are edge-maximal without containing an MK4. Before we
can phrase this result, we need the following terminology.

Definition (Pasting graphs). Let G1, G2 be induced subgraphs of a graph G
and write H := G1 ∩ G2. If G = G1 ∪ G2, then we say that G is obtained by
pasting G1 and G2 along H.

Proposition 6.10. A graph on at least three vertices is edge-maximal without
an MK4 if and only if it can be constructed from triangles by recursively pasting
along edges.

CHAPTER 6. EXTREMAL GRAPH THEORY 105

Proof. Like in the proof of Proposition 3.8, where we (among other things)
proved that every MK3,3 contains a TK3,3, we see that containing an MK4 is
equivalent to containing a TK4. We may thus replace “edge-maximal without
MK4” by “edge-maximal without TK4”.

Let us first prove the following auxiliary result.

If a graph G is obtained by pasting graphs G1, G2 along an edge,
and if TK4 ̸⊆ G1 and TK4 ̸⊆ G2, then also TK4 ̸⊆ G.

(∗)

To prove (∗), let G be obtained by pasting G1, G2 along an edge xy and
suppose that G contains a TK4. One of G1, G2, without loss of generality G1,
contains all four branch vertices, because branch vertices b1 ∈ V (G1 −G2) and
b2 ∈ V (G2 − G1) would be separated by {x, y} and thus be connected by at
most two internally disjoint paths, contradicting the fact that there are three
internally disjoint b1–b2 paths in the TK4. At most one of the subdivided edges
of K4 can pass through G2−G1; replacing such a segment by the edge xy yields
a TK4 in G1. This proves (∗).

x

y

G1 G2

Figure 6.7: Generating a TK4 in G1 from a TK4 in G.

We now prove the proposition by induction on |G|. The induction base
|G| = 3 is trivial, because triangles are both edge-maximal without TK4 and
constructible. Now let |G| ≥ 4.

Assume first that G is constructible; i.e. it is obtained by pasting two con-
structible graphs G1, G2 along an edge xy. Then (∗) implies that G does not
contain a TK4. To prove thatG is edge-maximal without TK4, let v1, v2 ∈ V (G)
be non-adjacent vertices. If v1, v2 lie in the same Gi, then G + v1v2 contains
a TK4, because G1 and G2 are edge-maximal without TK4. We may thus as-
sume that v1 ∈ V (G1−G2) and v2 ∈ V (G2−G1). An easy induction argument
(using Lemma 1.10) shows that G1, G2 are 2-connected. By the fan version of
Menger’s theorem, we find a v1–{x, y} fan in G1 and a v2–{x, y} fan in G2,
consisting of two paths each. The union of these paths, together with the edges
v1v2 and xy, forms a TK4 in G + v1v2, with branch vertices v1, v2, x, y. Thus,
G is edge-maximal without TK4.

Vice versa, suppose that G is edge-maximal without TK4, then it is in
particular connected. Since |G| ≥ 4, we also know that G is not complete; let S
be a smallest separator and let u, v be vertices in N(S) separated by S. Let U be
the vertex set of the component of G−S that contains u and set G1 := G[U ∪S]
and G2 := G − U . We aim to show that G1 ∩ G2 = G[S] is an edge and that
both G1 and G2 are constructible.

If |S| ≥ 3, then u, v are connected by internally disjoint paths P1, P2, P3 by
Menger’s theorem. The set {u, v} is not a separator, thus we can pick a shortest

CHAPTER 6. EXTREMAL GRAPH THEORY 106

v1
v2

x

y

G1 G2

Figure 6.8: Finding a TK4 in G+ v1v2.

path Q between vertices wi, wj of distinct Pi, Pj that avoids {u, v}. This yields
a TK4 with branch vertices u, v, wi, wj , a contradiction.

u v

wi

wj

Pi

Pj

Q

Figure 6.9: In the case |S| ≥ 3, we find a TK4 in G by applying Menger’s
theorem.

If S is just a single vertex w, then G + uv is obtained by pasting G1 and
G2∪vuw along an edge. By assumption, G1 does not contain a TK4. If G2∪vuw
contained a TK4, then u would not be a branch vertex (since it has degree two)
and any subdivided edge passing through u could be shortcut via vw to yield a
TK4 in G2, a contradiction. Thus, (∗) implies that G+ uv does not contain a
TK4, a contradiction.

w

u v

z

G1 G2

S

Figure 6.10: In the case |S| = 1, there is no TK4 in G+uv, because neither G1

nor G2 + vuw contains a TK4.

This means that S = {s, t}. If s, t were not adjacent, then G + st would
contain a TK4 and would be obtained by pasting G1 + st and G2 + st along
an edge. But then by (∗), one of the two parts, say G1 + st, would contain
a TK4 as well. This TK4 needs to use the edge st; the subdivided edge that
goes through st could then be rerouted via G2 to give rise to a TK4 in G, a

CHAPTER 6. EXTREMAL GRAPH THEORY 107

contradiction. Thus, st is an edge. This means that G is obtained by pasting
G1 and G2 along an edge.

s

t

G1 G2

Figure 6.11: Generating a TK4 in G from a TK4 in G+ st.

To show thatG1 is constructible, first note thatG1 contains no TK
4, because

G does not. If u, v ∈ V (G1) are not adjacent, then G+ uv contains a TK4 and
is obtained by pasting G1 + uv and G2 along an edge. Since TK4 ̸⊂ G2, we
deduce that G1+uv contains a TK4 by (∗). Thus, G1 (and analogously also G2)
is edge-maximal without a TK4. By induction, both graphs are constructible
and thus so is G, as desired.

Corollary 6.11. Hadwiger’s Conjecture holds for r = 4.

Proof. Triangles are 3-colourable and pasting two 3-colourable graphs along an
edge results in a 3-colourable graph. Therefore, Proposition 6.10 implies that all
edge-maximal graphs (and thus all graphs) without an MK4 are 3-colourable.
In other words, every graph with chromatic number at least four has to contain
an MK4.

r = 5. Edge-maximal graphs without an MK5 can be constructed in a fashion
similar to Proposition 6.10.

Theorem 6.12 (Wagner 1937). A graph G with |G| ≥ 3 is edge-maximal with-
out an MK5 if and only if it can be constructed from the “Wagner graph”

W :=
(
{v1, . . . , v8}, {vivj : i− j ∈ {±1, 4} mod 8}

)
and plane triangulations by recursively pasting along triangles or edges.

Figure 6.12: The Wagner graph W .

The proof of Theorem 6.12 is considerably longer than that of Proposi-
tion 6.10, but is using similar ideas. We omit the proof in this course.

CHAPTER 6. EXTREMAL GRAPH THEORY 108

Corollary 6.13. Hadwiger’s Conjecture holds for r = 5.

Proof. The Wagner graph is 3-colourable, while every plane triangulation is 4-
colourable by the Four Colour Theorem. Thus, Theorem 6.12 implies that every
graph without an MK5 is 4-colourable. Vice versa, this means that every graph
with chromatic number at least five contains an MK5.

Remark. We saw in the proof of Corollary 6.13 that the Four Colour Theorem
implies Hadwiger’s Conjecture for r = 5. In fact, the reverse implication holds
as well, with a much easier argument: Hadwiger’s Conjecture for r = 5 states
that every graph with chromatic number at least five contains an MK5 and thus
is not planar, i.e. every planar graph is 4-colourable.

Any proof of Hadwiger’s Conjecture for r ≥ 5 (recall Hadwiger’s Conjecture
for any fixed value r ≥ 5 would imply the case r = 5, see the remark on page 104)
that does not use the Four Colour Theorem would thus reprove the Four Colour
Theorem. To this date, no such proof is known.

r = 6. This is the largest value for which Hadwiger’s Conjecture has been
proved.

Theorem 6.14 (Robertson, Seymour, Thomas 1993). Hadwiger’s Conjecture
holds for r = 6.

The proof of this case is again much harder than for any smaller r. The
basic proof idea is as follows. Suppose that the conjecture is false and let G be
a smallest counterexample. Robertson, Seymour, and Thomas then need several
case distinctions and about 80 pages to prove that G has to contain a vertex v
such that G − v is planar. By the Four Colour Theorem, this contradicts the
assumption that χ(G) ≥ 6.

Remark. Hadwiger’s Conjecture is open for every r ≥ 7.

