Advanced and algorithmic
 graph theory

Summer term 2023

Exercise sheet 1

Exercises for the exercise session on $21 / 03 / 2023$
Problem 1.1. Let G be a connected graph. Prove that the following statements are equivalent for an edge $e \in E(G)$.
(i) $G-e$ is not connected;
(ii) No cycle in G contains e;
(iii) Every spanning tree of G contains e;
(iv) Every spanning tree of G constructed by depth-first search contains e (independently of the order in which we check vertices in the FOR-loops).

Problem 1.2. Let G be a connected weighted graph. For $i=1,2$, denote by T_{i} the graph that is generated by Algorithm i from the lecture. Reminder:

Alg. 1: Start with $T_{1}=(V(G), \emptyset)$. Recursively add to T_{1} edges of smallest weight that do not create a cycle.

Alg. 2: Start with $T_{2}=G$ and recursively delete edges of largest weight that do not disconnect T_{2}.

Prove that both T_{1} and T_{2} are spanning trees of G and that both have smallest total weight among all spanning trees of G.

Problem 1.3. Let G be a graph and let a, b be two distinct vertices of G. Suppose that each of the vertex sets $X, X^{\prime} \subseteq V(G) \backslash\{a, b\}$ is an $a-b$ separator. Denote by C_{a} and C_{b} the component of $G-X$ that contains a and b, respectively. Define C_{a}^{\prime} and C_{b}^{\prime} analogously for X^{\prime}. Prove that the sets

$$
\begin{aligned}
& Y_{a}:=\left(X \cap C_{a}^{\prime}\right) \cup\left(X \cap X^{\prime}\right) \cup\left(X^{\prime} \cap C_{a}\right), \\
& Y_{b}:=\left(X \cap C_{b}^{\prime}\right) \cup\left(X \cap X^{\prime}\right) \cup\left(X^{\prime} \cap C_{b}\right)
\end{aligned}
$$

are a - b separators as well.

Problem 1.4. Let $G, a, b, X, X^{\prime}, Y_{a}, Y_{b}$ be as in Problem 1.3.
(a) Prove that X is a minimal $a-b$ separator (with respect to containment, i.e. no proper subset of X is an $a-b$ separator) if and only if each vertex in X has neighbours in both C_{a} and C_{b}.
(b) Suppose that both X and X^{\prime} have smallest size among all $a-b$ separators in $V \backslash\{a, b\}$. Prove that Y_{a} and Y_{b} are then also smallest $a-b$ separators in $V \backslash\{a, b\}$.
(c) Give an example for which X and X^{\prime} are minimal a - b separators (w.r.t. containment), but Y_{a} and Y_{b} are not minimal.

Problem 1.5. Let G be k-connected, where $k \geq 2$. Prove that G contains a cycle of length at least $\min \{2 k,|G|\}$. Show that this statement is best possible in the sense that for every $k \geq 2$, there is a k-connected graph with no cycle of length at least $\min \{2 k+1,|G|\}$.

Problem 1.6. Find all mistakes in the following 'proof' of the set version of Menger's theorem. What statement(s) would be necessary to prove in order to complete the proof?
Let S be a smallest $A-B$ separator. We say that a component C of $G-S$ meets A if C contains a vertex of A. Denote by G_{A} the graph that G induces on the union of S and all vertex sets of components of $G-S$ that meet A. Define G_{B} analogously. By the choice of S and induction, G_{A} contains $|S|$ disjoint $A-S$ paths, while G_{B} contains $|S|$ disjoint $S-B$ paths. Joining these paths yields the desired set of $|S|$ disjoint $A-B$ paths.

