Advanced and algorithmic
 graph theory

Summer term 2023

Exercise sheet 5

Exercises for the exercise session on 13/06/2023
Problem 5.1. Prove that the recursive-largest-first algorithm colours all bipartite graphs optimally and show that it can be implemented to run in time $O(n m)$.

Problem 5.2. Given a non-empty graph G, denote by $P_{G}: \mathbb{N} \rightarrow \mathbb{N}$ the function that maps each $k \in \mathbb{N}$ to the number of k-colourings of G (recall that we assume the set of colours of a k-colouring to be $\{1, \ldots, k\}$).
(a) Use induction on $\|G\|$ to prove that P_{G} is a polynomial of the form

$$
P_{G}(k)=k^{|G|}-\|G\| k^{|G|-1}+\sum_{i=1}^{|G|-2} a_{i} k^{i} .
$$

(P_{G} is also called the chromatic polynomial of G.)
(b) Describe how to determine the chromatic polynomial of a graph algorithmically. What running time do you need?

Problem 5.3. Prove directly (that is, without using any results about edgecolourings from the lecture) that every k-regular bipartite graph is k-edge-colourable. Prove that this implies Theorem 4.22, i.e. $\chi^{\prime}(G)=\Delta(G)$ for every bipartite graph.

Problem 5.4. Describe an algorithm that finds, for every input graph G, an edgecolouring of G with at most $\chi^{\prime}(G)+1$ colours. What running time can you achieve? Hint. Vizing's theorem and its proof.

Problem 5.5. For every $k \in \mathbb{N}$, construct a bipartite graph G_{k} and an assignment of lists that shows that G_{k} is not k-choosable.

Problem 5.6. A total colouring of G is a function $c: V(G) \cup E(G) \rightarrow S$ such that $\left.c\right|_{V(G)}$ and $\left.c\right|_{E(G)}$ are vertex- and edge-colourings, respectively, and in addition no edge has the same colour as one of its end vertices. We write $\chi_{t}(G)$ for the least k for which there exists a total colouring of G with k colours.
Prove that the list colouring conjecture would imply $\Delta(G)+1 \leq \chi_{t}(G) \leq \Delta(G)+3$. (The total colouring conjecture asserts that even $\chi_{t}(G) \leq \Delta(G)+2$.)

