Advanced and algorithmic graph theory

Summer term 2023

Exercise sheet 5

Exercises for the exercise session on 13/06/2023

Problem 5.1. Prove that the recursive-largest-first algorithm colours all bipartite graphs optimally and show that it can be implemented to run in time O(nm).

Problem 5.2. Given a non-empty graph G, denote by $P_G \colon \mathbb{N} \to \mathbb{N}$ the function that maps each $k \in \mathbb{N}$ to the number of k-colourings of G (recall that we assume the set of colours of a k-colouring to be $\{1, \ldots, k\}$).

(a) Use induction on ||G|| to prove that P_G is a polynomial of the form

$$P_G(k) = k^{|G|} - ||G|| k^{|G|-1} + \sum_{i=1}^{|G|-2} a_i k^i.$$

 $(P_G \text{ is also called the chromatic polynomial of } G.)$

(b) Describe how to determine the chromatic polynomial of a graph algorithmically. What running time do you need?

Problem 5.3. Prove directly (that is, without using any results about edgecolourings from the lecture) that every k-regular bipartite graph is k-edge-colourable. Prove that this implies Theorem 4.22, i.e. $\chi'(G) = \Delta(G)$ for every bipartite graph.

Problem 5.4. Describe an algorithm that finds, for every input graph G, an edgecolouring of G with at most $\chi'(G) + 1$ colours. What running time can you achieve? *Hint. Vizing's theorem and its proof.*

Problem 5.5. For every $k \in \mathbb{N}$, construct a bipartite graph G_k and an assignment of lists that shows that G_k is *not* k-choosable.

Problem 5.6. A total colouring of G is a function $c: V(G) \cup E(G) \to S$ such that $c|_{V(G)}$ and $c|_{E(G)}$ are vertex- and edge-colourings, respectively, and in addition no edge has the same colour as one of its end vertices. We write $\chi_t(G)$ for the least k for which there exists a total colouring of G with k colours.

Prove that the list colouring conjecture would imply $\Delta(G) + 1 \leq \chi_t(G) \leq \Delta(G) + 3$. (The total colouring conjecture asserts that even $\chi_t(G) \leq \Delta(G) + 2$.)