## Exercise 1

A coin with possible outcomes 0 (head) and 1 (tail) is thrown 3 times $\left(\Omega=\{0,1\}^{3}\right)$. What is the minimal $\sigma$-algebra containing the following events?
(a) "the outcome of the first throw is 1 "
(b) "the sum of the outcomes is even"
(c) "the outcome of the first throw is 1 and the sum of the outcomes is even"
(d) "the outcome of the first throw is 1" and "the sum of the outcomes is even"

## Exercise 2

Consider two independent rolls of a fair six sided die. Let $i$ be the outcome of the first roll and $j$ the outcome of the second roll. Consider the following events:

$$
A=[i \text { is even }], \quad B=[i \text { divides } 6], \quad C=[i+j=10] .
$$

(a) Show that $\mathbb{P}(A \cap B \cap C)=\mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)$.
(b) Are the three events independent?

## Exercise 3

We are given two urns: urn 1 contains 8 black balls and 2 white ball and urn 2 contains 3 black ball and 9 white balls. First we draw randomly 2 balls from urn 1 and put them in urn 2. Then we draw randomly a ball from urn 2 .
(a) Compute the probability that the drawn balls from urn 1 are both black.
(b) Compute the probability that the drawn balls from urn 1 are both black when given that the ball drawn from urn 2 is black.

## Exercise 4

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{A}$ events. Show that
(a)

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{k=1}^{n}\left((-1)^{k-1} \sum_{\substack{I \subseteq\{1, \ldots, n\} \\|I|=k}} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)\right)
$$

(b) If the $A_{i}$ are disjoint and $\bigcup_{i=1}^{n} A_{i}=\Omega$, then for every $B \in \mathcal{A}$

$$
\mathbb{P}(B)=\sum_{i=1}^{n} \mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)
$$

## Exercise 5

Let $\Omega$ be the set of all finite sequences of zeros and ones.
(a) Find a probability measure $\mathbb{P}$ on $\mathcal{A}=\mathcal{P}(\Omega)$, such that for each finite sequence $\omega \in \Omega$, $\mathbb{P}(\{\omega\})>0$.
(b) Is $\Omega$ a countable set?
(A countable set is a set which can be enumerated $\Omega=\left\{\omega_{n}: n \in \mathbb{N}\right\}$ )

## Exercise 6

Let $\Omega$ be a sample set and let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ with $\mathcal{A}_{n} \subseteq \mathcal{P}(\Omega)$ be a family of $\sigma$-algebras. Show that:
(a) If $\mathcal{A}_{n+1} \subseteq \mathcal{A}_{n}$ for every $n$ then $\bigcap_{n} \mathcal{A}_{n}$ is a $\sigma$-algebra.
(b) If $\mathcal{A}_{n} \subseteq \mathcal{A}_{n+1}$ for every $n$ then $\bigcup_{n} \mathcal{A}_{n}$ is, in general, not a $\sigma$-algebra.

