Exercise sheet 02 - 11.04.2024

Exercise 7

The joint distribution of the pair of random variables (X, Y) is given by the following matrix:

(i, j)	1	3	4
0	0.04	0.09	0.27
2	0.06	0.12	0.42

For example, $\mathbb{P}[(X, Y) = (0, 1)] = 0.04$.

- (a) Calculate the marginal distributions of X and Y.
- (b) Are X and Y independent?
- (c) Calculate the covariance Cov(X, Y) of X and Y, which is defined by

$$Cov(X,Y) = \mathbb{E}\left((X - E(X))(Y - \mathbb{E}(Y))\right).$$

Exercise 8

Let $(X_n)_{n \in \mathbb{N}}$ be an infinite sequence of independent random variables with $\mathbb{P}[X_n = 1] = p_n$ and $\mathbb{P}[X_n = 0] = 1 - p_n$. Show:

- (a) $X_n \to 0$ in probability if and only if $p_n \to 0$.
- (b) $X_n \to 0$ almost surely if and only if $\sum_{n \ge 1} p_n < \infty$.

(For the second part, you may use the *Borel-Cantelli Lemma* without proof, although it can be shown directly.)

Exercise 9

Show that a random variable $X: \Omega \to \mathbb{R}$ is almost surely constant, if and only if

$$\mathbb{V}(X) = 0$$

(A random variable X is called almost surely constant, if $\mathbb{P}[X = a] = 1$ holds for some $a \in \mathbb{R}$.)

Exercise 10

Let X_1, X_2, \ldots be a sequence of i.i.d. random variables and let N be an integer-valued random variable independent of the X_i . Let

$$S = X_1 + \dots + X_N = \sum_{i=1}^{\infty} X_i \mathbf{1}_{i \le N}.$$

Show that

$$\mathbb{V}(S) = \mathbb{V}(X_1) \, \mathbb{E}(N) + \left(\mathbb{E}(X_1)\right)^2 \mathbb{V}(N)$$

Exercise 11

Given a non-negative integer-valued random variable X, show

(a)
$$\sum_{i=0}^{\infty} i \mathbb{P}[X \ge i] = \frac{1}{2} \left(\mathbb{E}(X^2) + \mathbb{E}(X) \right),$$

(b)
$$\mathbb{E}(X^2) = \sum_{i=0}^{\infty} i (\mathbb{P}[X \ge i] + \mathbb{P}[X > i]).$$