Information Theory - SS 2024

Exercise sheet 02-11.04.2024

Exercise 7

The joint distribution of the pair of random variables (X, Y) is given by the following matrix:

(i, j)	1	3	4
0	0.04	0.09	0.27
2	0.06	0.12	0.42

For example, $\mathbb{P}[(X, Y)=(0,1)]=0.04$.
(a) Calculate the marginal distributions of X and Y.
(b) Are X and Y independent?
(c) Calculate the covariance $\operatorname{Cov}(X, Y)$ of X and Y, which is defined by

$$
\operatorname{Cov}(X, Y)=\mathbb{E}((X-E(X))(Y-\mathbb{E}(Y)))
$$

Exercise 8

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be an infinite sequence of independent random variables with $\mathbb{P}\left[X_{n}=1\right]=p_{n}$ and $\mathbb{P}\left[X_{n}=0\right]=1-p_{n}$. Show:
(a) $X_{n} \rightarrow 0$ in probability if and only if $p_{n} \rightarrow 0$.
(b) $X_{n} \rightarrow 0$ almost surely if and only if $\sum_{n \geq 1} p_{n}<\infty$.
(For the second part, you may use the Borel-Cantelli Lemma without proof, although it can be shown directly.)

Exercise 9

Show that a random variable $X: \Omega \rightarrow \mathbb{R}$ is almost surely constant, if and only if

$$
\mathbb{V}(X)=0
$$

(A random variable X is called almost surely constant, if $\mathbb{P}[X=a]=1$ holds for some $a \in \mathbb{R}$.)

Exercise 10

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables and let N be an integer-valued random variable independent of the X_{i}. Let

$$
S=X_{1}+\cdots+X_{N}=\sum_{i=1}^{\infty} X_{i} \mathbf{1}_{i \leq N}
$$

Show that

$$
\mathbb{V}(S)=\mathbb{V}\left(X_{1}\right) \mathbb{E}(N)+\left(\mathbb{E}\left(X_{1}\right)\right)^{2} \mathbb{V}(N)
$$

Exercise 11

Given a non-negative integer-valued random variable X, show
(a) $\sum_{i=0}^{\infty} i \mathbb{P}[X \geq i]=\frac{1}{2}\left(\mathbb{E}\left(X^{2}\right)+\mathbb{E}(X)\right)$,
(b) $\mathbb{E}\left(X^{2}\right)=\sum_{i=0}^{\infty} i(\mathbb{P}[X \geq i]+\mathbb{P}[X>i])$.

