Information Theory - SS 2024

Exercise sheet 04 - 25.04.2024

Exercise 16

An urn contains r red, w white, and b black balls. We first draw $k \geq 2$ balls (one by one) from the urn with replacement (putting them back after each draw). Denote their colours by X_{1}, \ldots, X_{k}. Then we draw k balls from the urn without replacement. Denote their colours by Y_{1}, \ldots, Y_{k}.
(a) Find $H\left(X_{1}, \ldots, X_{k}\right)$.
(b) Which is larger, $H\left(X_{1}, \ldots, X_{k}\right)$ or $H\left(Y_{1}, \ldots, Y_{k}\right)$? Prove your statement.
(Hint : Clearly $Y_{1} \sim X_{1}$, show that $Y_{k} \sim X_{1}$ for all k)

Exercise 17

Suppose you have $n>2$ coins and among them there may or may not be a counterfeit coin, which is either heavier or lighter than the other coins. You weigh the coins with a balance to determine if there is a heavier or lighter counterfeit coin. Let $k(n)$ be the smallest number of weighings always sufficient to find the counterfeit coin (if any) among the n coins and correctly declare it to be heavier or lighter.
(a) Show that $k(n) \geq \log _{3}(2 n+1)$.
(b) (Difficult) Give a coin weighing strategy for $k=3$ weighings and $n=12$ coins.

Exercise 18

Show that the entropy of the probability distribution $\left(p_{1}, \ldots, p_{i}, \ldots, p_{j}, \ldots, p_{n}\right)$ cannot be larger than the entropy of the distribution $\left(p_{1}, \ldots, \frac{p_{i}+p_{j}}{2}, \ldots, \frac{p_{i}+p_{j}}{2}, \ldots, p_{n}\right)$. When do we have equality?

Exercise 19

Let X_{1}, \ldots, X_{n}, Y be random variables. Prove the chain rule for mutual information, that is, show explicitly that

$$
I\left(\left(X_{1}, \ldots, X_{n}\right) ; Y\right)=I\left(X_{1} ; Y\right)+I\left(X_{2} ; Y \mid X_{1}\right)+\ldots+I\left(X_{n} ; Y \mid X_{1}, \ldots, X_{n-1}\right)
$$

Give a more general chain rule for expressions of the form $I\left(\left(X_{1}, \ldots, X_{n}\right) ;\left(Y_{1}, \ldots, Y_{m}\right)\right)$.

