Information Theory - SS 2024

Exercise sheet 05 - 02.05.2024

Exercise 20

Our goal is to identify a random object X which is distributed in \mathcal{X} with some distribution p. A question Q from a set \mathcal{Q} is asked at random according to distribution r. This results in a deterministic answer $A=A(X, Q)$, that is, there is a deterministic function $(x, q) \mapsto A(x, q)$ from \mathcal{X} to \mathcal{Q}. Suppose X and Q are independent. Then $I(X ; Q, A)$ is the uncertainty in X removed by the question-answer pair (Q, A).
(a) Show that $I(X ; Q, A)=H(A \mid Q)$ and interpret this statement.
(b) Now suppose that two i.i.d. questions $Q_{1}, Q_{2} \sim r$ are asked, yielding answers A_{1} and A_{2}. Show that $I\left(X ; Q_{1}, A_{1}, Q_{2}, A_{2}\right) \leq 2 I\left(X ; Q_{1}, A_{1}\right)$.

Exercise 21

The interaction information of three random variables X_{1}, X_{2}, X_{3} is defined as

$$
I\left(X_{1} ; X_{2} ; X_{3}\right):=I\left(X_{1} ; X_{2}\right)-I\left(X_{1} ; X_{2} \mid X_{3}\right) .
$$

(a) Show that the interaction information is symmetric, in the sense that $I\left(X_{1} ; X_{2} ; X_{3}\right)=$ $I\left(X_{\sigma(1)} ; X_{\sigma(2)} ; X_{\sigma(3)}\right)$ holds for any permutation σ of $\{1,2,3\}$.
(b) Give an example of random variables X_{1}, X_{2}, X_{3} such that $I\left(X_{1} ; X_{2} ; X_{3}\right)<0$.

Exercise 22

Consider the Markov chain $\left(X_{n}\right)_{n \geq 0}$ on $\mathcal{X}=\{1, \ldots, 7\}$ with transition matrix

$$
\mathbf{P}=\left(\begin{array}{ccccccc}
\frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{3} \\
\frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{3} \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{3} \\
0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{3}
\end{array}\right) .
$$

(a) Draw the transition graph. Is $\left(X_{n}\right)$ irreducible?
(b) Calculate $\mathbb{P}\left[X_{n}=i \mid X_{0}=6\right]$ for $i \in \mathcal{X}$ and $n \in\{1,2,3\}$.
(c) Give a stationary distribution for X_{n}. Is it unique?
(d) Calculate $\lim _{n \rightarrow \infty} \mathbb{P}\left[X_{n}=i \mid X_{0}=6\right]$ for all $i \in \mathcal{X}$.

Exercise 23

Give an example to show that in general, a function of a Markov chain is not necessarily again a Markov chain (i.e., find a Markov chain $\left(X_{n}\right)_{n \geq 0}$ with finite spate space \mathcal{X} and a function $f: \mathcal{X} \rightarrow \mathcal{Y}$ such that $\left(Y_{n}\right)_{n \geq 0}$ with $Y_{n}=f\left(X_{n}\right)$ is not a Markov chain).

Exercise 24

Let $\left(X_{n}\right)_{n \geq 0}$ be an irreducible time homogeneous Markov chain with transition matrix P and stationary initial distribution ν. Let $N \in \mathbb{N}$ and consider the stochastic process $\left(Y_{n}\right)_{n=0}^{N}$ where $Y_{n}=X_{N-n}$.
(a) Show that $\left(Y_{n}\right)_{n=0}^{N}$ is a Markov chain.
(b) Determine the transition matrix for the chain.
(c) Show that the reversed chain is stationary and determine its stationary distribution.

Exercise 25

Consider the Drunkard's walk Markov chain with state space $\mathcal{X}=\{0,1, \ldots, N\}$ and transition matrix:

$$
\mathbf{P}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
\beta & 0 & \alpha & 0 & \cdots & 0 & 0 \\
0 & \beta & 0 & \alpha & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \beta & 0 & \alpha & 0 \\
0 & 0 & \cdots & 0 & \beta & 0 & \alpha \\
0 & 0 & \cdots & 0 & 0 & 0 & 1
\end{array}\right)
$$

where $0<\alpha<1$ is the probability of moving one step from position k to position $k+1$, and $\beta=1-\alpha$ is the probability to move from position k to position $k-1$, for $k=1, \ldots, N-1$.
(a) Given an initial distribution $(0, \ldots, 0,1,0, \ldots, 0)$ with 1 on the j-th entry, let p_{j}, for $j=0, \ldots, N$, be the probability that $X_{n}=N$ for some $n \geq 0$ (the drunkard reaches home). Find a set of linear equations for the p_{j}. [Hint: Express p_{j} in terms of p_{j-1} and p_{j+1}]
(b) Compute p_{j} for the concrete case where $N=3, j=1$ and $\alpha=\frac{1}{2}$.

