Exercise 24

Let $(X_n)_{n\geq 0}$ be an irreducible time homogeneous Markov chain with transition matrix P and stationary initial distribution ν . Let $N \in \mathbb{N}$ and consider the stochastic process $(Y_n)_{n=0}^N$ where $Y_n = X_{N-n}$.

- (a) Show that $(Y_n)_{n=0}^N$ is a Markov chain.
- (b) Determine the transition matrix for the chain.
- (c) Show that the reversed chain is stationary and determine its stationary distribution.

Exercise 25

Consider the *Drunkard's walk* Markov chain with state space $\mathcal{X} = \{0, 1, ..., N\}$ and transition matrix:

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \beta & 0 & \alpha & 0 & \cdots & 0 & 0 \\ 0 & \beta & 0 & \alpha & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \beta & 0 & \alpha & 0 \\ 0 & 0 & \cdots & 0 & \beta & 0 & \alpha \\ 0 & 0 & \cdots & 0 & 0 & 0 & 1 \end{pmatrix}$$

where $0 < \alpha < 1$ is the probability of moving one step from position k to position k + 1, and $\beta = 1 - \alpha$ is the probability to move from position k to position k - 1, for k = 1, ..., N - 1.

- (a) Given an initial distribution $(0, \ldots, 0, 1, 0, \ldots, 0)$ with 1 on the *j*-th entry, let p_j , for $j = 0, \ldots, N$, be the probability that $X_n = N$ for some $n \ge 0$ (the drunkard reaches home). Find a set of linear equations for the p_j . [Hint: Express p_j in terms of p_{j-1} and p_{j+1}]
- (b) Compute p_j for the concrete case where N = 3, j = 1 and $\alpha = \frac{1}{2}$.

Exercise 26

Consider the Weather in Oz Markov chain $(X_n)_{n\geq 0}$ with state space $\mathcal{X} = \{c, r, s\}$ (clear, rainy, snowy) and transition matrix:

$$\mathbf{P} = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/4 & 1/2 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{pmatrix} \,.$$

- (a) Compute a stationary distribution for the Markov chain.
- (b) Compute the entropy rate of the stochastic process.

Exercise 27

Consider the experiment of consecutively rolling a fair die. For $n \ge 1$, let Z_n be the RV representing the number of rolls until '6' appears n times.

- (a) Is $(Z_n)_{n>1}$ a Markov Chain?
- (b) Is $(Z_n)_{n\geq 1}$ stationary?
- (c) Compute the entropy rate of $(Z_n)_{n\geq 1}$.

Exercise 28

- (a) Prove that for every Markov chain $(X_n)_{n \in \mathbb{N}}$ the quantity $H(X_0|X_n)$ is non-decreasing in $n \ge 0$.
- (b) Show that for any stationary discrete stochastic process $(X_n)_{n \in \mathbb{Z}}$,

$$H(X_0|X_{-1},\ldots,X_{-n}) = H(X_0|X_1,\ldots,X_n).$$

Exercise 29

Let $(X_n)_{n\geq 1}$ be a stochastic process of i.i.d. Bernoulli RVs with distribution $\mathbb{P}[X_n = 1] = p$ and $\mathbb{P}[X_n = 0] = 1 - p$, for $n \geq 1$. Let $(Y_n)_{n\geq 1}$ be a stationary stochastic process with values in $\{0, 1\}$, such that for $n \geq 3$,

$$Y_n = X_n \oplus Y_{n-1} \oplus Y_{n-2},$$

where \oplus is addition modulo 2. What is the entropy rate of the stochastic process $(Y_n)_{n \ge 1}$?