Exercise 28

- (a) Prove that for every Markov chain $(X_n)_{n \in \mathbb{N}}$ the quantity $H(X_0|X_n)$ is non-decreasing in $n \ge 0$.
- (b) Show that for any stationary discrete stochastic process $(X_n)_{n \in \mathbb{Z}}$,

$$H(X_0|X_{-1},\ldots,X_{-n}) = H(X_0|X_1,\ldots,X_n).$$

Exercise 29

Let $(X_n)_{n\geq 1}$ be a stochastic process of i.i.d. Bernoulli RVs with distribution $\mathbb{P}[X_n = 1] = p$ and $\mathbb{P}[X_n = 0] = 1 - p$, for $n \geq 1$. Let $(Y_n)_{n\geq 1}$ be a stationary stochastic process with values in $\{0, 1\}$, such that for $n \geq 3$,

$$Y_n = X_n \oplus Y_{n-1} \oplus Y_{n-2},$$

where \oplus is addition modulo 2. What is the entropy rate of the stochastic process $(Y_n)_{n\geq 1}$?

Exercise 30

Let $(X_i)_{i\geq 1}$ be a stochastic process with finite state space \mathcal{X} . Show that if one of the limits

$$\lim_{n \to \infty} \frac{1}{n} H(X_{k+1}, \dots, X_{k+n})$$
$$\lim_{n \to \infty} \frac{1}{n} H(X_{k+1}, \dots, X_{k+n} \mid X_1, \dots, X_k)$$

exists for some $k \in \mathbb{N}_0$, then both limits exist for every $k \in \mathbb{N}_0$ and all of them coincide.

Exercise 31

Let $(X_n)_{n\geq 0}$ be a time-homogeneous Markov chain with state space $\mathcal{X} = \{0, 1\}$ and transition probabilities: p(0|0) = 0.3, p(1|0) = 0.7, p(0|1) = 0.2, p(1|1) = 0.8.

- (a) Draw the transition graph.
- (b) Compute the stationary distribution ν of the Markov chain.
- (c) Let t^0 be the first return time to 0 after starting with $X_0 = 0$. Based on the transition graph, compute $\mathbb{E}(t^0 \mid X_0 = 0)$ as the sum of an infinite series and then find $\nu(0)$ according to the Ergodic Theorem for Markov Chains. Compare it with what you got in part (b).

Exercise 32

Consider again the Markov Chain $(X_n)_{n\geq 0}$ from Exercise 31.

- (a) Calculate the entropy rate h.
- (b) Given that the Markov chain starts at $X_1 = 0$, find whether the sequences $w_1, w_2 \in \mathcal{X}^{20}$ are in the typical set $A_{\varepsilon}^{(20)}$, for $\varepsilon = 0.05$:

$$w_1 = 01001010010110110010,$$

 $w_2 = 01110011110111011111.$

Exercise 33

Consider again the Markov Chain $(X_n)_{n\geq 0}$ from Exercise 31 and suppose that $X_1 = 0$.

- (a) Find an integer n and a word $w \in \mathcal{X}^n$ such that w lies in the typical set $A_{0.005}^{(n)}$.
- (b) Given $\epsilon > 0$, provide an idea on how to construct a word w lying in the typical set $A_{\epsilon}^{(n)}$ for some integer n.