Exercise 33

Let $(X_n)_{n\geq 0}$ be a time-homogeneous Markov chain with state space $\mathcal{X} = \{0, 1\}$ and transition probabilities: p(0|0) = 0.3, p(1|0) = 0.7, p(0|1) = 0.2, p(1|1) = 0.8 and suppose that $X_1 = 0$.

- (a) Find an integer n and a word $w \in \mathcal{X}^n$ such that w lies in the typical set $A_{0,005}^{(n)}$.
- (b) Given $\epsilon > 0$, provide an idea on how to construct a word w lying in the typical set $A_{\epsilon}^{(n)}$ for some integer n.

(Recall that the stationary distribution $\nu = \left(\frac{2}{9}, \frac{7}{9}\right)$ and the entropy rate h is $\approx 0.757...$)

Exercise 34

Let $(X_n)_{n\geq 1}$ be a stochastic process which satisfies the AEP with entropy rate h and suppose r > h. Show that there is a sequence of block codes $C^{(n)}: \mathcal{X}^n \to \{0,1\}^m$ with rate $r = \frac{m}{n}$ such that $p_{\text{err}}^{(n)} \to 0$.

(Hint: Define an injective encoding of the elements of the typical set $A_{\epsilon}^{(n)}$ as in the proof of Theorem 4.2)

Exercise 35

Let $(X_n)_{n\geq 1}$ be a stochastic process which satisfies the AEP with entropy rate h and suppose r < h. Show that there is some $\epsilon > 0$ which depends only on r and h such that for sufficiently large n and any block code $C^{(n)}: \mathcal{X}^n \to \{0,1\}^m$ with rate $r = \frac{m}{n}, p_{\text{err}}^{(n)} > \epsilon$.

(Hint: Consider the Markovian triple $(X_1, \ldots, X_n) \to C^{(n)}(X_1, \ldots, X_n) \to (\hat{X}_1, \ldots, \hat{X}_n)$ given by the source, code and estimate and apply Fano's inequality)

Exercise 36

Let $\mathcal{X} = \{a, b, c, d\}$ and

$$C(a) = 01,$$
 $C(b) = 11,$ $C(c) = 00,$ $C(d) = 001.$

- (a) Show that this code is not prefix free but uniquely decodable.
- (b) Show that there are arbitrarily long words $x_1 \cdots x_n$ such that $C(x_1 \cdots x_n)$ can only be decoded at the very end, that is, that the initial element x_1 cannot be recovered from any proper prefix of $C(x_1 \cdots x_n)$.

Exercise 37

Let $X : \Omega \to \mathcal{X} = \{a, b, c, d\}$ be a random variable with

$$\mathbb{P}[X=a] = \frac{5}{8}, \qquad \mathbb{P}[X=b] = \frac{1}{8}, \qquad \mathbb{P}[X=c] = \frac{1}{8}, \qquad \mathbb{P}[X=d] = \frac{1}{8}.$$

The elements of \mathcal{X} are encoded as follows:

$$C(a) = 00,$$
 $C(b) = 10,$ $C(c) = 11,$ $C(d) = 110.$

- (a) Is the code C (i) non-singular, (ii) prefix-free, (iii) uniquely decodable?
- (b) Calculate the entropy H(X) and the expected code length $\mathbb{E}(\ell(C))$.
- (c) Give a better code for this random variable (prefix-free, shorter expected length).

Exercise 38

Let $C : \mathcal{X} \to \Sigma = \{0, 1, \dots, D-1\}$ be a *D*-ary prefix code on a set \mathcal{X} of cardinality *m* and suppose that the code word lengths l_1, \dots, l_m satisfy the strict inequality

$$\sum_{i=1}^m D^{-l_i} < 1.$$

Show that there are arbitrary long strings $w \in \Sigma^*$ which are not code words, that is, w is not the code word of any string in \mathcal{X}^* .