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Preface

The course is based on the lecture notes of Wolfgang Woess.
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1 Introduction to Probability Theory

Probability is a mathematical phenomenon that we see in every day life that we perhaps intu-
itively understand. As a motivating example, consider what is called the law of large numbers -
if we toss a fair coin 1000 times every day, then each day we will get heads about 500 times. Of
course, we won’t get exactly 500 heads, but the deviations we observe, over the repeated trials,
should be small. Similarly, if we roll a fair die many times, the relative frequency of the outcome
“6” will be approximately 1/6. From a certain philosophical viewpoint, this is what we mean
when we say “The probability of rolling a 6 is 1/6”.

More generally, the law of large numbers says that if we have some random experiment,
whose outcome is a real number, and we repeat the experiment many times, then the average
of the outcomes should converge to some specific, deterministic number, which is the expected
outcome of the experiment.

In some ways this is intuitive, in other ways almost tautological, but what we want then from
a theory of probability is a set of axioms which behaves like how we experience probability in
the real world, and so in particular statements like the law of large numbers should follow as a
mathetmatical theorem from these axioms.

1.1 Probability Spaces

Definition 1.1. A probability space is a triple (Ω,A,P), where

1. Ω is a non-empty set, the sample space,

2. A is a σ-algebra, that is, a collection of subsets of Ω such that

(i) Ω ∈ A,
(ii) A ∈ A ⇒ Ac = Ω \A ∈ A,
(iii) if An ∈ A for n = 1, 2, . . ., then

⋃∞
n=1An ∈ A.

3. P is a probability measure on A, that is, a function P : A → [0, 1] such that

(i) P(∅) = 0 and P(Ω) = 1,

(ii) if An ∈ A are pairwise disjoint for n = 1, 2, . . ., that is, An ∩ Am = ∅ for all m ̸= n,
then

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An).

We should think of the sample space Ω as consisting of all possible outcomes of some random
experiment.

Example 1.2. (a) Our experiment is a coin toss. Our two outcomes are “Heads” and “Tails”
and so our sample space is Ω = {Heads,Tails}. We could equally ‘encode’ the outcomes
as Heads = 1 and Tails = 0, in which case our sample space is Ω = {0, 1}.
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(b) Our experiment is again a coin toss, but we don’t just measure the side that the coin lies
on, but also its position on the ground, which is some point (x, y) in the plane with the
coin-tosser standing at the origin, as well as the number m of times that the coin rotates
whilst in the air. Then, a possible sample space would be

Ω = {(ℓ, x, y,m) : ℓ ∈ {0, 1}, (x, y) ∈ R2,m ∈ N0}.

(c) Our experiment is sequence of n coin tosses, and we measure the sequence of outcomes.
We can take our sample space to be

Ω = {0, 1}n

sequences of 0s and 1s of length n, which we call bitstrings, where the kth element of the
sequence is the outcome of the kth coin toss.

(d) Our (theoretical) experiment is an infinite sequence of coin tosses. Our sample space is
then

Ω = {0, 1}N

all infinite sequences of 0s and 1s (an uncountabke set!).

The function P then tells us, for an event, a particular subset of the possible outcomes, how
likely it is that this event occurs, that is, how likely it is that the outcome lies in this subset.

It turns out, for complicated mathematical reasons, even if the sample space Ω is something
familiar like the real numbers R or the unit interval [0, 1], there is no way to define a consistent
notion of measure that will assign a probability to every subset of Ω - very weird sets exist! For
this reason we have to restrict ourselves to some ‘well-behaved’ collection of sets, this σ-algebra
A. However, this is no great restriction, as we can choose A such that any event that you can
actually physically describe will lie inside A.

When Ω is countable, one can usually take A = P(Ω), the power set of Ω, consisting of all
subsets of Ω. However, when Ω is uncountable, such as Ω = R, then there is no way to define
any function P satisfying the definition of a probability space with A = P(R).

For the most part we will work with discrete probability spaces, those where Ω is countable,
and so avoid these difficulties. In this case, if Ω is countable and A = P(Ω), then the probability
measure is determined by the measure of the elementary events ω ∈ Ω since

P(A) =
∑
ω∈A
P({ω}) for all A ∈ P(Ω).

Definition 1.3. Given a logical expression Φ concerning the elements of Ω, we will write [Φ]
for the event

A = {ω ∈ Ω: Φ is true for ω},

and if A ∈ A (which will usually be the case) we define

P[Φ] := P(A).

Example 1.4. (a) Our experiment is to roll two fair dice. Our sample space is

Ω = {(i, j) : 1 ≤ i, j ≤ 6}
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and we can take our σ-algebra to be A = P(Ω).
An event we could consider is the event that the total value of the two dice is 11, that is,
we consider the event A = [the total value of the dice is 11], or in other words

A = {(i, j) ∈ Ω: i+ j = 11}.

(b) Our experiment is as in Example 1.2 (b). We consider the event

A = [the coin lands at distance at most r from the coin tosser]

= {(ℓ, x, y,m) : x2 + y2 ≤ r2}.

Similarly the event

A = [the coin spins at least 3 times and lands on Heads]

= {(ℓ, x, y,m) : ℓ = 1,m ≥ 3}.

One can easily deduce the following properties from Definition 1.1.

Proposition 1.5. (i) ∅ ∈ A,

(ii) If An ∈ A for n = 1, 2, . . ., then
⋂∞

n=1An ∈ A,

(iii) If A,B ∈ A then A ∪B,A ∩B ∈ A and

P(A ∪B) = P(A) + P(B)− P(A ∩B),

(iv) If A ∈ A, then P(Ac) = 1− P(A),

(v) If A,B ∈ A and A ⊆ B, then P(A) ≤ P(B).

The next lemma is fundamental.

Lemma 1.6 (Continuity of the probability measure). If (An : n ∈ N) is an increasing sequence,
that is An ⊆ An+1 for all n ∈ N, with An ∈ A for all n, then

P

( ∞⋃
n=1

An

)
= lim

N→∞
P(AN ).

Similarly, if (An : n ∈ N) is an decreasing sequence, that is An ⊇ An+1 for all n ∈ N, with
An ∈ A for all n, then

P

( ∞⋂
n=1

Ai

)
= lim

N→∞
P(AN ).

Proof.

Definition 1.7 (Conditional probability, Independence). Given two events A,B ∈ A we define

P(A | B) =

{P(A∩B)
P(B) , if P(B) > 0,

0, if P(B) = 0.
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Given two logical expression Φ1 and Φ2, where A = {ω ∈ ω : Φ1 is true for ω} and B = {ω ∈
ω : Φ2 is true for ω}, we will write

P[Φ1 | Φ2] = P(A | B).

We say A and B are independent if P(A ∩ B) = P(A) · P(B). A sequence (finite or infinite)
of events (An : n ∈ I) is called (mutually) indepenent if for all choices of indices J ⊆ I

P

(⋂
i∈J

Aj

)
=
∏
i∈J

P(Aj).

We note that this condition is stronger than asking for pairwise independence of the events
Ai, Aj for i, j ∈ I.

Example 1.8. Suppose we flip two fair coins, so that Ω = {0, 1}2, A = P(Ω). We can check
that each outcome is equally likely, and so for all events A ⊆ Ω

P(A) =
|A|
|Ω|

=
|A|
4

.

Let us consider the events

A1 = [the first coin lands Heads],

A2 = [the second coin lands Heads],

A3 = [both coins land on the same side],

so that A1 = {(1, 0), (1, 1)}, A2 = {(0, 1), (1, 1)} and A3 = {(0, 0), (1, 1)} and Ai ∩Aj = {(1, 1)}
for all i, j.

In particular P(Ai) =
2
4 = 1

2 for all i ≤ 3 and P(Ai ∩Aj) =
1
4 = P(Ai) · P(Aj) for all i, j ≤ 3,

and hence all pairs of events are independent.

However, A1 ∩A2 ∩A3 = {(1, 1)} and so P(A1 ∩A2 ∩A3) =
1
4 , but

3∏
i=1

P(Ai) =

(
1

2

)3

=
1

8
̸= 1

4
.

Hence, whilst these three events are pairwise independent, we shouldn’t intuitively think of
the sequence as being independent. Indeed, if we know that both A1 and A2 happens, then it
is already determined that A3 must happen!

1.2 Random Variables

Definition 1.9 (Discrete Random Variable, Distribution). Given a probability space (Ω,A,P),
a discrete random variable is a function X : Ω→ X , where |X | is countable, such that for every
B ⊆ X the set
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X−1(B) = {ω ∈ Ω: X(ω) ∈ B} = [X ∈ B],

is a member of the σ-algebra A.

That is, a discrete random variable is some function of our sample space which takes values
in some discrete set X , such that for any possible subset of X , the probability that X lies in
this subset is well-defined.

The distribution of X is the function PX : P(X )→ [0, 1] given by

PX(B) = P[X ∈ B].

When One can check that (X ,P(X ), PX) is a probability space. If X ⊆ R we say that X is a
discrete real random variable.

We can think of random variables as “functions of chance”. When our probability space
models the outcome of some random experiment, a random variable extracts some aspect of the
experiment which can be measured.

A lot of very natural random variables are not discrete, for example when the observable
is not a discrete, but a continuous quantity, and there is a corresponding theory of continuous
random variables. However, this won’t be relevant until the very last part of the course, and
dealing with them formally is a bit more involved. In particular, unless otherwise stated, every
random variable we consider in the course will be discrete, and we will only state the relevant
results for discrete random variables. However, in almost all cases, analogous statements can be
shown to hold for continuous random variables.

So, a random variable X assigns to each outcome ω in the sample space an element X(ω) =
x ∈ X . It is important then to keep track of the difference between the random variable X and
one of the possible values x that X can take.

Example 1.10. Suppose we toss a sequence of n fair coins, so that we have a sample space
Ω = {0, 1}n (and since Ω is finite we can take A = P(Ω)). Since the coin is fair, each possible
outcome, each sequence ω ∈ Ω, is equally likely to occur, and so P({ω}) = 2−n for all ω, and
P(A) = |A|2−n for all A ∈ A.

Now we can look at some random variables, functions from Ω to R, which are observable
quantities from this experiment. For example I could define Xk(ω) to be the kth element in the
sequence ω, the outcome of the kth coin toss.

Then Xk is a discrete random variable, it takes values in Xk = {0, 1}, and we can calculate
the distribution

PXk
({0}) = P[Xk = 0] = P[The kth coin toss is tails] =

1

2
,

and similarly PXk
({1}) = 1

2 , PXk
(∅) = 0, PXk

({0, 1}) = 1.

Or we could define Sn(ω) to be the sum of the elements of ω, or in other words the number
of heads thrown. Again, Sn is a discrete random variable, taking values in Sn = {0, . . . , n}. In
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this case for each k ∈ {0, . . . , n} we can calculate PSn({k}) = P[Sn = k]. Indeed, this is just a
combinatorial exericise

P[Sn = k] = |[Sn = k]|2−n

= |{ω : ω has precisely k zeroes}|2−n

=

(
n

k

)
2−n.

It is then easy to see that for every A ⊆ {0, . . . , n}

PSn(A) =
∑
k∈A

PSn({k})

Definition 1.11 (Discrete density function). Given a discrete random variable X taking values
in X the discrete density function pX : X → [0, 1] is defined by

pX(x) = P[X = x] = PX({x}).

This, pX(x) ̸= 0 if and only if x = xi for some i ∈ I. In particular,

1 = P[X ∈ X ] =
∑
x∈X

pX(x),

and for any B ⊆ X
PX(B) =

∑
x∈B

pX(x),

and so the discrete density function and the distribution of X determine one another. For this
reason, we will often refer to the discrete density function as the distribution of the random
variable.

We will often think of the discrete density function as a vector p ∈ RX with ||p||1 = 1.
Conversely, for any such vector p there is a random variable X whose density function satisfies
pX = p.

During the course we will normally just introduce random variables by specifying their dis-
tributions or discrete density function, rather than making reference to any specific probability
space.

Example 1.12. (a) Given q ∈ [0, 1] a Bernoulli random variable Ber(q) takes values in {0, 1}
and has distribution given by

pBer(q)(1) = p and pBer(q)(0) = 1− p,

so that pBer(q) = (1 − q, q). We can think of this random variable as the outcome of a
biased coin flip.

(b) Given an event A, the indicator random variable of the event A

1A(ω) =

{
0 if ω ̸∈ A,

1 if ω ∈ A.

In particular, if P(A) = q, then p1A = (1 − q, q), and so 1A has the same distribution as
Ber(q).
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(c) Given n ∈ N and q ∈ [0, 1] a binomial random variable Bin(n, q) takes values in {0, . . . , n}
and has distribution given by

pBin(n,q)(k) =

(
n

k

)
qk(1− q)n−k.

We can think of this random variable as counting the number of heads in a sequence of n
consecutive flips of a random coin.

However, in this way, if I have two random variables X and Y , given just in terms of their
distributions, this doesn’t necessarily tell us ‘the whole story’. Indeed, if X and Y are both
observables from the same random experiment, then their values may be related in some way -
if X is the height of a random person on the street and Y is the weight, then for most outcomes,
most people, the values of X and Y will be positively correlated, if X is large then Y is more
likely to be large and vice versa.

Definition 1.13 (Joint distribution). If we have two discrete random variables X and Y defined
on the same probability space, the joint discrete density function (which again we will usually
refer to as the joint distribution) is defined as

pX,Y (x, y) = P[X = x, Y = y],

and from the joint density function we can reconsruct the marginal density functions of X and
Y , which are given by

pX(x) =
∑
y∈Y

pX,Y (x, y) and pY (y) =
∑
x∈X

pX,Y (x, y).

Note that there can be many different joint density functions pX,Y with the same marginal
density functions pX and pY .

More generally, if X1, . . . , Xn are all discrete random variables, defined on the same proba-
bility space, taking values in sets X1, . . . ,Xn, then the ‘vector’ of random variables (X1, . . . , Xn)
is also a discrete random variable, which takes values in some subset of the product set X1 ×
. . . ,×Xn. In this case, the joint discrete density function is defined as

pX1,...,Xn(x1, . . . , xn) = P[X1 = x1, X2 = x2, . . . , Xn = xn],

and the marginal distributions are defined in the obvious way.

Definition 1.14 (Conditional distribution). Given jointly distributed discrete random variables
X and Y , and some value x ∈ X with pX(x) > 0, the conditional density function (conditional
distribution) of Y , given that X = x, is

pY |X(y|x) = P[Y = y|X = x] =
pX,Y (x, y)

pX(x)
=

pX,Y (x, y)∑
y′∈Y pX,Y (x, y′)

.

Note that, pX and pY |X together determine the joint distribution pX,Y and hence also the
marginal density function pY .

When the random variables that we are dealing with are clear from the context, we will
often drop the subscripts in the notation above and simply write expressions likes p(x), p(x, y)
or p(y|x).
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Example 1.15. Suppose we toss three coins and we let X be the number of heads in the first
two coin tosses and Y be the number of heads in the last two coin tosses.

Then we can calculate the joint distribution of X and Y :

(x, y) 0 1 2

0 1/8 1/8 0
1 1/8 1/4 1/8
2 0 1/8 1/8

The marginal distribution pX is given by the sum of the rows, which is pX = (1/4, 1/2, 1/4)
and the marginal distribution pY is given by the sum of the columns, which is pY = (1/4, 1/2, 1/4).
Note that, as expected, both are distributed as Bin(3, 1/2).

The conditional distribution pX|Y is then :

(x|y) 0 1 2

0 1/2 1/4 0
1 1/2 1/2 1/2
2 0 1/4 1/2

Definition 1.16 (Independence). A sequence of discrete random variables X1, . . . , Xn are in-
dependent, if for any sequence of subsets B1 ⊆ X1, . . . , Bn ⊆ Xn the events

[X1 ∈ B1], . . . , [Xn ∈ Bn]

are independent. In particular

P[X1 ∈ B1, . . . , Xn ∈ Bn] =

n∏
i=1

P[Xi ∈ Bi].

One can check that it is equivalent to show that the joint density of the sequence is equal to
the product of the marginal distributions, that is

pX1,...,Xn(x1, . . . , xn) =

n∏
i=1

pXi(xi) whenever xi ∈ Xi for all i. (1.1)

An infinite sequence (Xn)n∈N of discerete random variables is independent if the sequence
X1, . . . , Xn is independent for all n, or equivalently if (1.1) holds for all n ∈ N.

1.3 Markov’s and Chebyshev’s inequality

Definition 1.17 (Expectation). The expectation or expected value or mean of a discrete real
random variable X is

E(X) :=
∑
x∈X

x · P[X = x] =
∑
x∈X

x · pX(x),
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if the sum converges. Otherwise we informally say that the expectation is infinite.

If (Ω,P(Ω),P) is the underlying probability space, it can sometimes be simpler to use the
formula

E(X) =
∑
ω∈Ω

X(ω)P({ω}).

When X ̸⊆ R, so that X is not a real random variable, it does not make sense to talk about
the expectation of X. However, for any function g : X → R, we have that g(X) is a real random
variable (defined as g(X)(ω) = g(X(ω)) for all ω) whose expectation we can compute as

E(g(X)) =
∑
g∈X

g(x) · pX(x).

Lemma 1.18 (Linearity of expectation). Let X and Y be jointly distributed discrete real random
variables with finite expectations and let c ∈ R. Then

(i) E(c) = c,

(ii) E(X + Y ) = E(X) + E(Y ),

(iii) E(c ·X) = c · E(X),

(iv) x ≥ 0 for all x ∈ X ⇒ E(X) ≥ 0.

Proof.

However, it is not true in general that E(X · Y ) = E(X) · E(Y )! This does however hold in
the special case where X and Y are independent.

Lemma 1.19. Let X and Y be independent discrete real random variables with finite expecta-
tions. Then E(X · Y ) = E(X) · E(Y ).

Proof.

Another important quantity comes from considering how far a random variable deviates from
it’s expectation.

Definition 1.20 (Variance). Let X be a discrete real random variable with µ = E(X) < ∞.
The variance of X is defined as

V(X) = E((X − µ)2).

It can easily be shown, using the linearity of expectation, that

V(X) = E
(
X2
)
− (E(X))2.

In general, the variance is also not linear, but again for independent random variables, we
do have a nice formula.
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Lemma 1.21. Let X and Y be independent discrete real random variables with finite expecta-
tions and variances and let c ∈ R. Then V(cX) = c2V(X) and V(X ± Y ) = V(X) + V(Y ).

Proof. (Exercise)

It turns out that we can get some control over the distribution of a random variable X just
by controlling its expectation or variance. In practise, since many of the random variables that
arise are ‘simple’ combinations of ‘simple’ random variables, it it often possible to calculate,
estimate or bound the expectation or variance of these random variables, and in this way obtain
information about their distributions.

In particular, given an event A, it is easy to calculate the expectation and variance of the
indicator random variable 1A. Indeed

E (1A) = 1 · P[1A = 1] + 0 · P[1A = 0] = P(A),

and since 12A = 1A, we see that

V(1A) = E(12A)− (E(1A))2 = E(1A)− (E(1A))2 = P(A)− P(A)2.

Lemma 1.22 (Markov’s inequality). Let X be a non-negative discrete real random variable such
that 0 < E(X) <∞ and let a > 0. Then

P[X ≥ a] ≤ E(X)

a
.

Proof.

A simple, but powerful consequence of Markov’s inequality is Chebyshev’s inequality.

Corollary 1.23 (Chebyshev’s inequality). Let X be a real random variable such that E(X),V(X) <
∞ and let a > 0. Then

P
[
|X − E(X)| ≥ a

]
≤ V(X)

a2
.

Proof.

1.4 Convergence of Random Variables and the Law of Large Numbers

Definition 1.24 (Convergence of random variables). Let (Xn)n∈N be a sequence of real random
variables and X a random variable, all defined on the same probability space.

(i) Xn −→ X in probability if for every a > 0

lim
n→∞

P
[
|Xn −X| > a

]
= 0.
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(ii) Xn −→ X almost surely if
P[Xn → X] = 1,

that is, if
P({ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)}) = 1.

We will see that convergence almost surely implies convergence in probability, and so the
second is a stronger notion of convergence. We note that converse is not true! There exist
sequences of random variables which converge in probability but no almost surely.

Example 1.25. Let us consider a sequence of independent random variables (Xn)n∈N each
taking values in {0, 1} such that

P(Xn = i) =

{
1
n if i = 1

1− 1
n if i = 0.

For all a > 0, it is clear that

P(|Xn − 0| ≥ a) ≤ P(Xn = 1) =
1

n

and hence, Xn tend to 0 in probability.

On the other hand, Xn → 0 if and only there is some N such that Xn = 0 for all n ≥ N .
However for any fixed N , since the Xn are independent,

P[∀n ≥ N : Xn = 0] = lim
M→∞

P[∀N ≤ n ≤M : Xn = 0]

≤ lim
M→∞

M∏
n=N

(
1− 1

n

)

≤ lim
M→∞

exp

(
−

M∑
n=N

1

n

)
= 0,

where we used that 1− x ≤ e−x, which holds for all x, and also that
∑M

n=N
1
n ≈ lnM − lnN .

Hence,

P[Xn → 0] ≤
∞∑

N=1

P[∀n ≥ N : Xn = 0] = 0.

Whilst convergence in probability is not enough to guarantee convergence almost surely, it
does guarantee the existence of an almost surely convergent subsequence.

Theorem 1.26. Let (Xn)n∈N and X be as above. If Xn → X in probability, then there is a
subsequence (nk)k∈N such that Xn → X almost surely.

Theorem 1.27 (Weak law of large numbers). Let (Xn)n∈N be a sequence of independent random
variables with finite mean E(Xn) = µ <∞ and finite variance V(Xn) = σ2 <∞ (the same for
all n). Then

Xn =
1

n
(X1 +X2 + . . .+Xn)→ µ in probability.
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Proof.

As we saw, convergence in probability is weaker than convergence almost surely, and at times
we will need the stronger statement that the sample mean converges to the mean almost surely.

Theorem 1.28 (Strong law of large numbers). Let (Xn)n∈N be a sequence of independent,
identically distributed (i.i.d) random variables (that is, each Xn has the same distribution) with
finite mean E(Xn) = µ <∞. Then

Xn =
1

n
(X1 +X2 + . . .+Xn)→ µ almost surely.

The proof of this theorem is a bit beyond the focus of the course, however we will at time
want to relate the two notions of convergence, and will prove a few short lemmas on this topic.

One useful thing for a notion of convergence is that limits should be unique, although here
we only have uniqueness up to a set of measure 0.

Lemma 1.29. Let X, (Xn)n∈N be jointly distributed real random variables. If Xn → X and
Xn → X ′ in probability, then P[X = X ′] = 1.

Proof.

Finally, let us prove that convergence almost surely implies convergence in probability.

Theorem 1.30. Let X, (Xn)n∈N be jointly distributed real random variables. If Xn → X almost
surely, then Xn → X in probability.

Moreover, if we write Uk = sup{|Xn −X| : n ≥ k}, then Xn → X almost surely if and only
if Uk → 0 in probability.

Proof.

2 Discrete Entropy

2.1 Hartley’s formula and Shannon’s formula

Information theory deals with the mathematical problems that arise in the storage, transforma-
tion and transmission of information.

We would like to have some sort of theory that measures the informational content of some
data, which in some way should not depend on the particular form the data takes

Example 2.1. Suppose I have written down secretly a number from 0 to 31 and you wish to
identify the number asking only yes/no questions.

15



It is, intuitively, clear that the ‘best’ question to start with is “Is your number at most 15?”,
since either answer will reduce the number of possibilities by 1

2 . In a similar fashion each question
can reduce the number of possibilites by 1

2 , and so after 5 questions you can also identify the
number.

Considering a question as a unit of information, we might say that this hidden number then
contains 5 of these units, which we will call bits, of information.

If we think of encoding the numbers from 0 to 31 in binary, each number corresponds to a
sequence in {0, 1}5, and the questions that we ask correspond to asking about the value of the
kth digit in the sequence.

Hartley made this idea formal in 1928 when he defined the notion of the uncertainty of a
uniform random sample.

Definition 2.2 (Hartley’s formula). Suppose some element is chosen from a collection UN of
N different elements, with each being equally likely. The uncertainty of this random element
(which one can think of the informational cost to identify the element) is given by

H(UN ) = log2N.

This can be justified in terms of the follow (heuristic) axiomatic requirements

(A) H(U2) = 1,

(B) H(UN+1) ≥ H(UN ),

(C) H(UN ·M ) = H(UN ) +H(UM ).

The first two are relatively intuitive - the amount of information needed to identify one
of two elements is a single question or bit (alternatively, this is just some arbitrary choice to
normalise this measure with respect to the units we’ve chosen). Furthermore, clearly there is
more information needed to identify an element from a larger set.

For the third we can think of grouping our elements into N disjoint groups consisting of M
elements

UN ·M = U
(1)
M ∪ . . . ∪ U

(N)
M .

In order to identify one element from UN ·M we could identify first the group U
(i)
M that the

element lies in, and so identify a uniformly chosen unknown group from a collection of N many

groups, and then identify the unknown element of U
(i)
M , which is equally likely to be any of these

elements. Hence, the cost to identify this element is at most H(UN ) +H(UM ).

However, conversely, suppose we choose our random element by first choosing a random
group, and then choosing a random element of our group. If we can identify the random
element, we can identify both of these random choices, and so the cost to identify this element
must be at least H(UN ) +H(UM ).

In fact, Rényi showed that these three properties uniquely determine Hartley’s formula.
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Lemma 2.3. The function H(UN ) = log2N is the unique function satisfying properties (A)–
(C).

Proof.

Suppose now that our elements are not equally likely to be chosen, but that the kth element
is instead chosen with some probability pk. Can we justify, using the previous heuristic, what
the informational cost of identifying the chosen element is?

Well, in some sense the ‘cost’ to identify the hidden element does not change, we still might
need to identify any one of N elements. However, if one of the pks were much larger than all
the others, so in almost every case the kth element is chosen, it would be much more sensible
to start by asking “is the hidden element the kth element”? In the worst case we would have to
ask more questions, but on average we’d identify the element with many fewer questions!

So, it makes sense instead to consider the expected uncertainty, or the expected informational
cost to identify the unknown element. The following is a heuristic argument for how we should
define this quantity.

Let us assume that the probabilities pk are all rational, otherwise we can take some rational
approximations and argue “in the limit”. Instead of an element from UN where the kth element
is chosen with probability pk, I could choose an element from a larger set

UM = UM1 ∪ . . . ∪ UMN
.

where UMi contains piM elements, for some large M such that all these numbers are integers.
There is then a clear equivalence between identifying the group UMi in which this element lies,
and of identifying the element in the original problem.

By a similar argument as before, the expected informational cost of identify the random
element of UM , which should be log2M by Hartley’s formula, should be given by the expected
cost to identify the correct group UMi , which is the quantity we are interested in, which we
denote by H1, plus the expected cost to identify the correct element of this group, which we
denote by H2. Now the element lies in Mi with probability pi, and if the element lies in UMi

then the informational cost to identify it is log2Mi by Hartley’s formula. Hence, the expected
cost is

H2 =
∑
i

pi log2Mi =
∑
i

pi log2 piM =
∑
i

pi log2 pi +
∑
i

pi log2M = log2M +
∑
i

pi log2 pi.

Since H1 +H2 = log2M , it follows that

H1 = −
∑
i

pi log2 pi

which is known as Shannon’s formula. In the following section we will make this informal
discussion mathematically rigorous.
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2.2 Entropy

The idea of entropy originated in statistical mechanics. Roughly, given a thermodynamic system,
such as a gas or a liquid, if we know some global properties of the system, e.g temperature,
volume, energy, there are many different microstates, that is configurations of the individual
particles within the system, which are consistent with these measurements.

As an example imagine flipping 1000 coins. We have a global measurement, the number
of heads, but for each particular value for this, there are many different configurations of the
specific states each of the 1000 coins landed in which achieve this number of heads.

Under a broad assumption that each of these microstates are equally likely, Boltzmann de-
fined entropy of the system to be kB log(# of microstates) where kB is some constant. Gibbs
generalized this to microstates with unequal probabilities and gave the formula

S = −kB
∑

pi log(pi),

where S is the entropy, pi is the probability of the ith microstates, and the sum ranges over all
the microstates. This reduces to Boltzmann’s formula when the pi are equal.

The second law of thermodynamics states that the entropy of an isolated system never de-
creases, and so such systems naturally ‘tend’ towards the state with maximum entropy, known
as thermodynamic equilibrium. This was an attempt to formalise the idea that there is a nat-
ural ‘direction’ to natural processes, for example to explain why heat is transferred from hotter
objects to cooler objects, rather than the other way round (which would not by itself contradict
the conservation of energy in a process).

In the early 20th Century Hartley and Shannon found that similar equations arise naturally
in the study of information theory, and at the suggestion of Von Neumann, Shannon also named
it entropy.

“You should call it entropy, for two reasons. In the first place your uncertainty function has
been used in statistical mechanics under that name, so it already has a name. In the second
place, and more important, nobody knows what entropy really is, so in a debate you will always
have the advantage.” - John von Neumann

Definition 2.4 (Entropy). Let X be a discrete random variable taking values in a finite set X ,
and let

p(x) = pX(x) = P[X = x]

be the distribution ofX. The entropy ofX, which we will also call the entropy of the distribution
p, is defined as

H(X) = H(p) = −
∑
x∈X

p(x) log2 p(x). (2.1)

If we enumerate X = {x1, . . . , xn} and set pk = p(xk) then we might also use the following
notation, that p = (p1, . . . , pn) and

H(p) = H(p1, . . . , pn) = −
n∑

i=1

pi log2 pi.

18



Remark 2.5. For ease of notation, it will often be convenient to define

0 log 0 := 0,

whenever it appears in such a sum.

Example 2.6. Suppose the X is uniformly distributed on a set X = {x1, . . . , xn} of size n, so
that pk = p(xk) =

1
n for each k.

In this case

H(X) = H(p) = H

(
1

n
, . . . ,

1

n

)
= −

n∑
i=1

pi log2 pi = −
n∑

i=1

1

n
log2

1

n
= − log2

1

n
= log2 n.

Another way to think of entropy is as a measure of the expected amount of information
we gain from learning the value of X. Indeed, suppose we have some function g(x) which
measure the information we gain from learning that X takes the value x. We clearly gain more
information by knowing that a low probability event happens, so this function g(x) should a
decreasing function of p(x). In fact, as we will see later, there are other natural assumptions to
make about g(x) which, similar to Hartley’s formula, imply that the only ‘reasonable’ choice for
this function g is to take g(x) = − log2 p(x).

In this way, we can view (2.1) as an expectation - we have the weighted sum over some
probability distribution of a quantity, where this quantity is the function g : X → R given
by g(x) = − log2 p(x) (note that this is a deterministic function, even though it encodes the
probability distribution of the random variable X), then (2.1) can be rewritten as

H(X) =
∑
x∈X

p(x)g(x) = E(g(X)) = E(− log2 p(X)),

and it represents the expected amount of information we gain from learning the value of X.

Let us collect a few basic facts about the entropy function, some of which are obvious and
some of which we will prove formally later.

Remark 2.7. (1) H(X) ≥ 0, with equality if and only if X is constant.

(2) H(X) doesn’t depend on the values of the random variable X, just the distribution of
probabilities between these values. In other words, if we relabel the outcomes, that is, if we
take some bijection f : X → X ′ and let X ′ = f(X), then H(X ′) = H(X).

In other words if (p1, . . . , pn) and (p′1, . . . , p
′
n) are the same up to some permutation, then

H(p1, . . . , pn) = H(p′1, . . . , p
′
n).

(3) The function p1 7→ H(p1, 1−p1) is continuous for p1 ∈ [0, 1]. Furthermore this function is
symmetric, takes values 0 at p1 = 0, 1 and is maximised at p1 =

1
2 where it takes the value

1.

(4) More generally, for fixed n,

max{H(p) : p = (p1, . . . , pn)} = H

(
1

n
, . . . ,

1

n

)
= log2 n,

which the last equality is equivalent to Hartley’s formula.

In other words, the uniform distribution has the maximum expected uncertainty, or the
maximum expected information.
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A discrete random variable X determines another jointly distributed random variable Y if
there is an function f : X → Y such that Y = f(X)

Lemma 2.8. Let X and Y be jointly distributed discrete random variables taking finitely many
values such that X determines Y . Then H(Y ) ≤ H(X).

Proof.

In particular, if X determines Y and Y determines X, then H(X) = H(Y ).

Given jointly distributed discrete random variable X and Y , taking values in finite sets X and
Y, as mentioned the random vector Z = (X,Y ) is again a discrete random variable and we can
define the joint entropy of X and Y as the entropy of Z. That is, since for any z = (x, y) ∈ X×Y

P[Z = z] = P[X = x, Y = y] = pX,Y (x, y),

we can calculate
H(X,Y ) := H(Z) = −

∑
(x,y)∈X×Y

p(x, y) log2 p(x, y)

Similarly, given x ∈ X we can consider the conditional distribution of Y , given that X = x,
which we recall is

pY |X(y|x) =
pX,Y (x, y)

pX(x)

assuming that pX(x) > 0. We can thus write the entropy of this conditional distribution as

H(Y | X = x) := −
∑
y∈Y

p(y|x) log2 p(y|x) = −
∑
y∈Y

p(x, y)

p(x)
log2

p(x, y)

p(x)
.

Example 2.9. Suppose X and Y are both distributed on {1, 2, 3} and have joint distribution
given by

X=1 X=2 X=3

Y=1 1/8 1/4 0

Y=2 1/8 1/8 1/4

Y=3 0 1/8 0

so that pX = (1/4, 1/2, 1/4) and pY = (3/8, 1/2, 1/8). In this case we can calculate

H(X) =
1

4
log2 4 +

1

2
log2 2 +

1

4
log2 4 =

3

2
.

H(Y ) =
3

8
log2

8

3
+

1

2
log 2 +

1

8
log2 8 = 2− 3

8
log2 3.

H(X,Y ) = 4 · 1
8
log2 8 + 2 · 1

4
log2 4 =

5

2
.

H(Y |X = 1) =
1

2
log2 2 +

1

2
log2 2 + 0 log2 0 = 1.
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Definition 2.10 (Conditional entropy). The conditional entropy of a discrete random variable
Y given a discrete random variable X, both taking finitely many values, is the average value of
H(Y |X = x) with respect to the possible values of X

H(Y | X) =
∑
x∈X

pX(x)H(Y | X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2 p(y|x)

= −
∑

x∈X ,y∈Y
p(x, y) log2

p(x, y)

p(x)

So in the previous example we can calculate

H(Y | X) =
1

8
log2 2 +

1

8
log2 2 +

1

4
log2 2 +

1

8
log2 4 +

1

8
log2 4 +

1

4
log2 1 = 1.

We can think of H(Y |X) as the expected amount of information contained in the random
variable Y if we already know the value of X. In particular, if H(X,Y ) represents the expected
total information in both X and Y , then since discovering the value of X and Y is the same as
first discovering the value of X, and then discovering the value of Y , heuristically it should be
the case that H(X,Y ) = H(X) +H(Y | X), and indeed in the example above

5

2
= H(X,Y ) = H(X) +H(Y | X) =

3

2
+ 1.

It should heuristically be true that conditioning can only decreases the entropy, and indeed
this is the case. Later we will show a far more general statement.

Lemma 2.11. For any two jointly distributed discrete random variables X and Y taking finitely
many values H(Y ) ≥ H(Y | X).

Proof.

Theorem 2.12 (Chain rule). For any two jointly distributed discrete random variables X and
Y taking finitely many values

H(X,Y ) = H(X) +H(Y | X) = H(Y ) +H(X | Y ).

Proof.

More generally, using Theorem 2.12 it can be shown by induction that the following holds.

Theorem 2.13 (Chain rule). For any sequence of discrete random variables X1, X2, . . . , Xn

taking finitely many values

H(X1, . . . , Xn) =

n∑
k=1

H(Xk | Xk1 , . . . , X1).
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In fact, the chain rule holds in a slightly more general form, for conditional entropies, which
can be proved in much the same way.

Lemma 2.14 (Conditional Chain Rule). For any three jointly distributed random variables X,Y
and Z taking finitely many values

H(X,Y | X) = H(X | Z) +H(Y | X,Z)

Example 2.15. Suppose Z takes values in {1, . . . , n} and has probability distribution (p1, . . . , pn).
Let us define two new random variables : X = Z + 1[Z=1] and Y = 1[Z=1]. In particular,
pX = (p1 + p2, p3, . . . , pn) and pY = (1− p1, p1).

Now, since Z = X − Y , the pair (X,Y ) determine Z, and clearly X and Y are determined
by Z, and so

H(X,Y ) = H(Z) = H(p1, . . . , pn), H(X) = H(p1+p2, p3, . . . , pn), H(Y ) = H(1−p1, p1).

Now, if X = x ≥ 3, then Y = 0 and so H(Y | X = x) = 0. If X = 2, which happens with
probability pX(2) = p1 + p2, then Z is either 1 or 2, with probabilities p1 and p2, and so Y is
either 1 or 0 with the same probabilites, that is,

pY |X(1 | 2) = p1
p1 + p2

and pY |X(0 | 2) = p2
p1 + p2

.

Hence we can calculate,

H(Y |X) =
n∑

i=2

pX(i)H(X|Y = i) = (p1 + p2)H

(
p1

p1 + p2
,

p2
p1 + p2

)
,

and the chain rule H(X,Y ) = H(X) +H(Y |X) in this case implies

H(p1, . . . , pn) = H(p1 + p2, p3, . . . , pn) + (p1 + p2)H

(
p1

p1 + p2
,

p2
p1 + p2

)
, (2.2)

which holds for any probability distribution (p1, . . . , pn) (if we interpret the second term as 0
when p1 + p2 = 0).

For Hartley’s formula, there was a heuristic collections of axioms that determine what we
should expect from a measure of uncertainty that in fact determined Hartley’s formula as the
unique way to capture these axioms mathematically. It turns out that there is a similar axiomatic
basis for Shannon’s formula, in terms of some natural axioms that any measure of expected
uncertainty should satisfy.

Theorem 2.16. Let B = {(p1, . . . , pn) : n ∈ N, pk ≥ 0 for all k ≤ n, p1 + . . . + pn = 1} be the
set of all finite probability distributions. Suppose that we have some function H : B → R which
satisfies the following axioms:

(I) H is transposition invariant : if 1 ≤ i < j ≤ n then

H(p1, . . . , pi, . . . , pj , . . . , pn) = H(p1, . . . , pj , . . . , pi, . . . , pn).

(II) Normalisation : H(1/2, 1/2) = 1.
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(III) Continuity : The function p1 → H(p1, 1− p1) is continuous

(IV) Equation (2.2) holds for all p ∈ B with n ≥ 2.

Then

H(p1, . . . , pn) = −
n∑

k=1

pk log2 pk.

Proof. For mathematical students only.

In order to do this we will need the following variant of Lemma 2.3

Proposition 2.17. The function H(UN ) = log2N is the unique function satisfying properties
(A),(C) of Lemma 2.3 and the following variant of property (B):

(B*) limN→∞H(UN+1)−H(UN ) = 0.

2.3 Kullback-Leibler Divergence and Mutual Information

Definition 2.18. Let p and q be probability distributions on the same finite set X . The relative
entropy or Kullback-Leibler Divergence of p with respect to q is

D(p ∥ q) =
∑
x∈X

p(x) log2
p(x)

q(x)
= E

(
log2

p(X)

q(X)

)
,

where X is some random variable with distribution p.

Remark 2.19. Again here we need some convenition to deal with the cases where the quantity
p(x) log2

p(x)
q(x) is not defined. If p(x) = 0 then we define

0 log2
0

q(x)
= 0 for any q(x) ≥ 0,

and if p(x) ̸= 0, q(x) = 0 we define

p(x) log2
p(x)

q(x)
=∞ for any p(x) > 0.

In particular, if there is any x ∈ X such that p(x) > 0 and q(x) = 0, then D(p ∥ q) =∞.

This quantity is also sometimes called the Kullbakc-Liebler distance, however one should be
careful that this function does not behave as we would expect a distance function to behave -
in particular, it is not always symmetric and it does not satisfy the triangle inequality. In fact,
it is not even obvious that this quantity is non-negative, although we will later show that this is
the case.
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Example 2.20. Let X = {0, 1}, p = (p1, p2) and q = (q1, q2), with p1 + p2 = q1 + q2 = 1. Then

D(p ∥ q) = p1 log2
p1
q1

+ p2 log2
p2
q2

.

For example, for p = (1/2, 1/2) and q = (1/4, 3/4) we can compute

D(p ∥ q) = 1

2
log2 2 +

1

2
log2

2

3
= 1− 1

2
, log2 3

and

D(q ∥ p) = 1

4
log2

1

2
+

3

4
log2

3

2
=

3

4
log2 3− 1.

Definition 2.21. Let X and Y be two jointly distributed discrete random variables taking
values in finite sets X and Y. The mutual information of X and Y is defined as

I(X ; Y ) = D(pX,Y ∥ pX ⊗ pY )

where pX ⊗ pY (x, y) = pX(x)pY (y) = P[X = x]P[Y = y].

In other words, if we thinkg of the Kullback-Liebler divergence as a distance between distri-
butions, the mutual information of X and Y measures how far their joint distribution is from
the joint distribution of independent copies of X and Y , and so we can think of the mutual
information as a measure of dependence between random variables.

Plugging Definition 2.18 into Definition 2.21 we get the following explicit formula for the
mutual information

I(X ; Y ) =
∑

x∈X ,y∈Y
pX,Y (x, y) log2

pX,Y (x, y)

pX(x)py(y)
.

In particular, if X and Y are independent, then the term inside the log is always one, and so
I(X ; Y ) = 0. The larger the mutual information, the further in some sense X and Y are from
being independent.

Lemma 2.22. Let X and Y be two jointly distributed discrete random variables taking finitely
many values. Then

I(X ; Y ) = H(X) +H(Y )−H(X,Y ) = H(Y )−H(Y | X) = H(X)−H(X|Y ) = I(Y ; X).

In particular, I(X ; X) = H(X).

Proof.

Example 2.23 (Secure encryption). Suppose we have a set of messages M that we wish to
encrypt and a set of keys K that we can use to encrypt these messages. That is, every pair
m ∈ M and k ∈ K of a message and a key can be used to generate some encrypted text c ∈ C,
or ciphertext.

Normally we have some (pseudo)-random method of generating keys k ∈ K, which determines
some random variable K on K, and there is some underlying distribution M on the messages
M. An encryption scheme for M is a pair of random variables K and C, representing the key
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and the encrypted text such that K and C together determine M . This last condition is just
saying that we can decrypt the message given the key and the ciphertext.

A classical encryption scheme would consist of some deterministic function e :M×K → C
such that for each k ∈ K the function e(·, k)→ C is injective, and then taking C = e(M,K).

What does it mean for an encryption scheme to be secure? We want that someone who
doesn’t know the key cannot infer any information about the message from the ciphertext. To
put this in terms of entropy, we want that there is no mutual information between C and M .

Definition 2.24 (Perfectly secure encryption scheme). An encryption scheme K,C for M is
perfectly secure if I(M ; C) = 0.

There is an obvious example of a perfectly secure encryption scheme which is known as a
one-time pad. We assume (essentially wlog) that M = {0, 1}n and that we have a uniformly
distributed set of keys on the same set K = {0, 1}n. We take then a classical encryption scheme
where e(m, k) = m+ k where addition is taken in Zn

2 .

Theorem 2.25. The one time pad is perfectly secure.

Proof. (Exercise)

However this clearly isn’t a very efficient method of encryption, since it requires the two
parties to share a key which is as large as the message itself. However Shannon showed that this
is essentially necessary for a secure encryption scheme, in the sense that, in an perfectly secure
encryption scheme the set of keys must contain as least as much information as the messages.

Theorem 2.26. If K,C is a perfectly secure encryption scheme for M then H(K) ≥ H(M).

Proof.

As a more concrete example, if both M and K are uniformly distributed then Theorem 2.26
says that

log2 |K| = H(K) ≥ H(M) = log2 |M|.

That is, |K| ≥ |M| and so we need at least as many different keys as we have messages.

As with entropy, we can extend the concept of mutual information to conditional spaces.

Definition 2.27 (Conditional mutual information). Let X,Y, Z be three jointly distributed
discrete random variables taking finitely many values. The conditional mutual information of
X and Y given Z is defined as

I(X ; Y | Z) =
∑
z∈Z

pZ(z)I(X ; Y | Z = z)
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Let us briefly clarify the meaning of the above definition. Suppose pX,Y,Z(x, y, z) is the joint
distribution of the three random variables. We can define the joint distribution of X and Y
conditioned on Z as

pX,Y |Z(x, y|z) =
pX,Y,Z(x, y, z)

pZ(z)
.

Then

I(X ; Y | Z = z) =
∑

x∈X ,y∈Y
pX,Y |Z(x, y|z) log2

pX,Y |Z(x, y, z)

pX|Z(x|z)pY |Z(y|z)
,

so that

I(X ; Y | Z) =
∑

x∈X ,y∈Y,z∈Z
pX,Y,Z(x, y, z) log2

pX,Y |Z(x, y, z)

pX|Z(x|z)pY |Z(y|z)
.

Lemma 2.28. Let X,Y, Z be three jointly distributed discrete random variables taking finitely
many values. Then

I(X ; Y | Z) = H(X | Z) +H(Y | Z)−H(X,Y | Z)

= H(X | Z)−H(X | Y, Z) = H(Y | Z)−H(Y | X,Z).

Proof.

As a consequence it is easy to deduce the following variant of the chain rule for mutual
information.

Theorem 2.29 (Chain rule for mutual information). Let X1, . . . Xn and Y be jointly distributed
discrete random variables taking finitely many values. Then

I(X1, . . . , Xn ; Y ) =
n∑

k=1

I(Xk ; Y | Xk−1, . . . , X1).

Proof. Exercise - Use Theorem 2.13 and induct on n.

So far we have only proved various equalities about entropy, just by rearranging the formulas.
At various points it will be useful to be able to estimate, that is, bound from above or below,
entropies and related quantities, and a particularly useful tool for this come from Jensen’s
inequality. To state this inequality we will require a little background from analysis.

Definition 2.30 (Convex and concave). Let I ⊆ R be an open interval. A function f : I → R
is convex if for every x, y ∈ I and λ ∈ (0, 1)

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (2.3)

We can think of this as taking a weighted average z = λx+(1−λ)y of the points x and y, which
lies somewhere between x and y. f is convex if the value of the function at this point is smaller
than the same weighted average of f(x) and g(y).

Geometrically, this asserts that the line between f(x) and f(y) lies above the graph of the
function f between x and y.

We say f is strictly convex if (2.3) is strict for any x ̸= y. Similarly we say f is concave or
strictly concave if the inequality in (2.3) is reversed.
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Theorem 2.31 (Jensen’s inequality). Let f : I → R be a convex function on an open interval I
and let X be a real random variable taking values in I. If E(X) and E(f(X)) exist, then

E(f(X)) ≥ f(E(X)).

Furthermore, if f is strictly convex then the inequality is strict unless X is almost surely constant.

Proof.

Probably the most important application of Jensen’s inequality in information theory is the
following:

Theorem 2.32 (Information Inequality). Let p and q be distributions on a finite set X . Then
D(p ∥ q) ≥ 0 with equality if and only if p = q.

Proof.

Let us note then some immediate, and incredibly useful, corollaries of this Theorem.

Corollary 2.33. Let X,Y, Z and X1, . . . , Xn be jointly distributed discrete random variables
taking values in a finite set.

1. I(X ; Y ) ≥ 0, with equality if and only if X and Y are independent,

2. H(X | Y ) ≤ H(X), with equality if and only if X and Y are independent,

3. I(X ; Y | Z) ≥ 0, with equality if and only if X and Y are independent conditional upon
Z,

4. H(X1, . . . , Xn) ≤ H(X1) + . . . +H(Xn) with equality if and only if the Xk are mutually
independent.

Proof.

Another important consequence of Theorem 2.32 is the following.

Lemma 2.34 (Log sum inequality). Let a1, b1, . . . , an, bn ≥ 0 and let a =
∑n

k=1 ak and b =∑n
k=1 bk. Then

n∑
k=1

ak log2
ak
bk
≥ a log2

a

b
.

Proof.

As a corollary we get a weird looking statement asserting a sort of multivariable concavity
of the Kullback-Liebler divergence.
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Corollary 2.35. Let p(1), p(2), q(1) and q(2) be probability distributions on the same finite set X
and let λ ∈ (0, 1).

D(λ · p(1) + (1− λ) · p(2) ∥ λ · q(1) + (1− λ) · q(2)) ≤ λD(p(1) ∥ q(1)) + (1− λ)D(p(2) ∥ q(2))

Proof.

As a simple corollary we find that the entropy function is also concave.

Corollary 2.36. Let p, q be probability distributions on a finite set X and let λ ∈ (0, 1). Then

H(λp+ (1− λ)q) ≥ λH(p) + (1− λ)H(q).

Proof.

Remark 2.37. From the inequality

D(p ∥ u) = log2 |X | −H(p) ≥ 0,

we can conclude from Theorem 2.32 that H(p) ≤ log2 |X | with equality if and only if p is the
uniform distribution.

Suppose we are given the conditional distribution of a random variable Y with respect to a
random variable X, but no the distribution of X or Y . That is, we have the function

pY |X(y, x) = p(y|x),

where for each x we can think of the function p(·|x) as a distribution on Y.

Then, any probability distribution pX on X gives rise to a joint distribution pX,Y via

pX,Y (x, y) = pX(x)pY |X(y, x),

from which we can also derive the distribution p(y) = EpXp(y|X) =
∑

x∈X p(x)p(y|x).

In other words, if we fix ahead of time the conditional distribution, then the joint distribution
(X,Y ), and so in particular the distribution of Y , is determined by the distribution of X. We
can think of this as the evolution of a random process in time, where X and Y represent the
outcome at two specific times. In order to calculate the probability that we saw the outcome
(x, y) we need to know the probability that at the first time we had the outcome x, and then
the outcome that the process developed from x to become y at the second time.

We can think of this in terms of a transition matrix P , whose columns are indexed by X and
rows by Y and whose entry Pxy = p(y|x) is the probability that we observe y after observing
x, the probability that our process evolves from x to become y. The rows of this matrix p(·|x)
correspond to the conditional distribution of Y given that X = x, and so given a distribution pX
on X we can compute the marginal distribution on Y as pY = pXP and the joint distribution
(as an X × Y matrix) can be seen to be the product diag(pX) · P of a diagonal matrix with
entries pX(x) together with P , so that that xth row is pX(x)p(·|x) = pX,Y (x, ·).
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Theorem 2.38. Suppose pY |X is the conditional distribution of some discrete random variable
Y taking values in a finite set Y with respect to some unknown discrete random variable X
taking values in a finite set X . Then the function f(pX) = I(X ; Y ) = D(pX,Y ∥ pX ⊗ pY ) is
concave, that is, for any two distributions p and q on X and λ ∈ (0, 1)

f(λ · p+ (1− λ) · q) ≥ λf(p) + (1− p)f(q).

Conversely, if pX is known, then the function F (pY |X) = I(X ; Y ) is convex.

Proof.

Definition 2.39. Let X,Y and Z be jointly distributed discrete random variables taking values
in a finite set. The triple (X,Y, Z) is called aMarkov(ian) triple, which we write as X → Y → Z,
if for all x, y with P[X = x | Y = y] > 0

P[Z = z | X = x, Y = y] = P[Z = z | Y = y]

If we think of X → Y → Z as the evolution of some random process over time, then this
says that if we know the “present”, the value of Y , then the future evolution does not depend
on the past.

For a Markov triple we can write the joint distribution as the product

pX,Y,Z(x, y, z) = pX(x) · pY |X(y | x) · pZ|X,Y (z | x, y) = pX(x) · pY |X(y | x) · pZ|Y (z | y). (2.4)

There is another nice equivalent description in terms of the conditional distributions.

Lemma 2.40. (X,Y, Z) is a Markovian triple if and only if X and Z are conditionally inde-
pendent, given Y . That is, if whenever pY (y) > 0,

pX,Z|Y (x, z | y) = pX|Y (x | y)pZ|Y (z | y).

Proof.

Note that the condition in Lemma 2.40 is symmetric in X and Z. In other words, we see
that X → Y → Z is a Markovian triple if and only if Z → Y → X is as well.

If we think about our random process as some method of processing some data, our input
data X is encoded or transmitted say, and we have as output data Y . Then, if forget about our
original data X, there should be no way to increase the amount of information about X that
the output Y contains by further processing (via some deterministic, or random, process).

As an example, we can think about the tranmission of some message X from Alice to Bob,
who receives the transmitted message Y (perhaps some random noise has been added in the
channel). Without access to the message X, there should be no way that Bob can deduce more
information about X than what is contained in Y .

Theorem 2.41 (Data processing inequality). If X → Y → Z, then I(X ; Z) ≤ I(X ; Y ).

Proof.
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Note that, since Z → Y → X is also a Markovian triple, we can also deduce from Theorem
2.41 that I(Z ; Y ) ≥ I(Z ; X) = I(X ; Z), and so

I(X ; Z) ≤ max{I(X ; Y ), I(Y ; Z)}.

Suppose, in the previous example, Alice transmit a message X to Bob, who receives Y , and
Bob wishes to reconstruct the message X from Y , via some process. Perhaps Alice is sending
pictures of some letters, and Bob receives slightly perturbed pictures, and so has to guess which
letter fits the picture best. This might be some deterministic process, or maybe when Bob is
unsure he makes some random choice, weighted by how likely he thinks each letter is. In this
way Bob makes a (potentially random) guess Z = X̂ based on Y , and we have a Markov triple
X → Y → Z.

How accurate can Bob be? There are many ways we could measure this, but one way would
be to look at the probability that Bob’s guess is correct, the probability that X̂ = X.

Now, from the Data processing inequality, we know that if lots of information is lost in
transmission, and so I(X ; Y ) is small, it shouldn’t be the case that X̂ is well-correlated with
X̂, since I(X ; X̂), which is a measure of dependence, is also small. So, we should expect to be
able to bound the probability of success, as some function of the mutual information I(X ; Y ),
and the following inequality makes this precise (in fact, we bound instead the probability of
failure, as a function of the conditional entropy H(X | Y )).

Theorem 2.42 (Fano’s inequality). Let X → Y → X̂ be a Markov triple, where we think of X̂
as an estimation of X on the basis of Y . Define perr = P[X̂ ̸= X]. Then

H(perr, 1− perr) + perr log2 |X | ≥ H(X | X̂) ≥ H(X | Y ).

In particular

perr ≥
H(X | X̂)− 1

log2 |X |
≥ H(X | Y )− 1

log2 |X |
.

Proof.

It is reasonable to ask why we mention also the weaker bounds in terms of H(X | Y ) rather
than H(X | X̂). This is useful if we’re interested in an a priori estimate, one that only depends
on the message X and the transmitted message Y , and not the method of reconstruction X̂.
This bound then holds for every possible X̂ - no matter how Bob attempts to guess the message
X, he must always have a failure probability of at least this quantity.

Remark 2.43. All the material in this section extends straightforwardly to arbitrary discrete
random variables, respectively probability distributions, taking values in countable sets.

That is, given a random variable X taking values in X = {xk : x ∈ N} with distribution
p = (p1, p2, . . .) we can define the entropy

H(X) = H(p) = −
∞∑
k=1

pk log2 pk,

which may also take the value +∞.
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3 Entropy Rate and Asymptotic Equipartition

3.1 Entropy Rate

Definition 3.1 (Stochastic process, state space). A stochastic process in discrete time is a
sequence (Xn)n∈N of jointly distributed random variables. The state space of the process is the
set X of possible values which the Xn can take.

Example 3.2. Pick a random page of a book and let Xn be the nth letter on the page.

Let X1 = 100 be constant, and let Xn be the bankroll after n spins of a roulette wheel of a
gambler who bets his entire stake on red each time.

Let X1 = (0, 0) ∈ Z2 and let Xn be the position after n steps of a ‘random walk’, where
in each time step we choose uniformly at random one of the four neighbours in the grid of our
current position and move there.

Given a stochastic process (Xn)n∈N we can think of H(X1, . . . , Xn) as the total amount of
information in the system at time n. This is clearly an increasing function of n. What we’re
interested in is the rate at which this function is increasing.

Definition 3.3 (Entropy rate). If (Xn)n∈N is a stochastic process whose state space is finite,
then the entropy rate or asymptotic entropy of the stochastic process is defined as

h := lim
n→∞

1

n
H(X1, . . . , Xn),

if the limit exists. The unit of h is bits per time unit.

We will see that the entropy rate represents a theoretical limit on how efficiently we can
encode the data stream (Xn)n∈N. Conversely, we will find for a broad class of processes, we can
achieve this theoretical limit asymptotically, using the idea of asymptotic equipartition.

We can think of h as the average amount of new information introduced in each step of the
stochastic process. Indeed, by the chain rule (Theorem 2.13)

1

n
H(X1, . . . , Xn) =

1

n

n∑
k=1

H(Xk | X1, . . . , Xk−1), (3.1)

where H(Xk | X1, . . . , Xk−1) is the amount of information introduced at the kth step.

What we will find is that the entropy rate represents a theoretical limit on how efficiently we
can encode the data stream (Xn)n∈N. Conversely, the idea of asymptotic equipartition is that
for a broad class of processes, we can achieve this theoretical limit asymptotically.

Lemma 3.4. If (Xn)n∈N is a stochastic process whose state space is finite and the limit h′ =
limk→∞H(Xk | X1, . . . , Xk−1) exists, then h exists and h = h′.

Proof.
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For i.i.d sequences, it is trivial to compute h using Lemma 3.4

Lemma 3.5. If (Xn)n∈N is a sequence of i.i.d discrete random variables taking values in a finite
set, then the entropy rate h exists and is equal to H(X1).

Proof.

Definition 3.6. A stochastic process (Xn)n∈N is stationary if for every ℓ, k ∈ N the two random
vectors

(X1, . . . , Xℓ) and (Xk+1, . . . , Xk+ℓ)

have the same distribution. In other words, for every choice of elements x1, . . . , xℓ ∈ X in the
state space,

P[X1 = x1, . . . , Xℓ = xℓ] = P[Xk+1 = x1, . . . , Xk+ℓ = xℓ].

Example 3.7. The simplest example of stationary processes are sequences of independent and
identically distributed random variables. For example, if we repeatedly roll a dice and let Xn

be the value of the nth roll.

As another example, suppose we have two biased coins with different probabilities p and q of
heads, and I choose randomly, say with probability 1

2 one of the coins to flip, and then let Xn

be the (bit) value of the nth coin toss. Then the Xn are not independent, if p is very close to
one and q is very close to 0, then if X1 = 1, it’s very likely that I picked the first coin and so
very likely that X2 = 1 as well. However, it is easy to show that this process is stationary.

The random walk on Z2 from the previous example is not stationary - X0 is deterministic,
whereas X1 is uniformly distributed on {(±1, 0), (0,±1)}.

Lemma 3.8. If (Xn)n∈N is a stationary process with a finite state space, then the entropy rate
h exists.

Proof.

Whilst Lemma 3.8 asserts the existence of the entropy rate for stationary processes, it is
non-constructive - it does not provide us a formula to calculate h. It is reasonable to ask if there
is a broader class of stochastic processes (than i.i.d) for which we can compute h explicitly.

3.2 Time-homogeneous Markov Chains

Definition 3.9. A stochastic process (Xn)n≥0 with finite state space X is a Markov chain (MC)
if for all n ∈ N and for all x0, . . . , xn ∈ X ,

P[Xn = xn | X0 = x0, . . . , Xn−1 = xn−1] = P[Xn = xn | Xn−1 = xn−1] := pn(xn|xn−1),

whenever P[X1 = x0, . . . , Xn−1 = xn−1] > 0.

A Markov chain is time-homogeneous if pn(y|x) := p(y|x) does not depend on n. In this case

the matrix P =
(
p(y|x)

)
x,y∈X

is the transition matrix of the time-homogeneous Markov chain

and the distribution of X0

ν(x) = P[X0 = x]
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is the initial distribution or starting distribution.

We note that the transition matrix P is always a stochastic matrix - the entries are all
non-negative and each row sums to one, that is for all x ∈ X∑

y∈X
p(y|x) = 1.

We can think of a Markov chain as a memoryless stochastic process - given the state of the
process at some time n, the future distribution does not depend on the past. In particular, it is
easy to check that each consecutive triple is Markovian and so

X0 → X1 → . . .→ Xn.

Example 3.10. Suppose we’re playing some board game with a number of possible states X .
Each turn we roll a dice and play according to some fixed strategy, so that the probability that
we move from a state x to a state y in any particular turn is fixed. The state Xn of some player
is then a time-homogeneous Markov chain.

A random walk is also an example of a time-homogeneous Markov chain - if we are currently
at a vertex x the probability that we move to a vertex y only depends on the current state, and
not the history of the walk.

Lemma 3.11. If (Xn)n≥0 is a Markov chain, then for any k ∈ N ((Xn, Xn+1, . . . , Xn+k))n≥0

is a Markov chain.

Proof. Exercise.

Definition 3.12 (The (di)graph of a Markov chain). Given a time-homogeneous Markov chain
(Xn)n≥0 with state space X , we can draw an associated (weighted) (di)graph whose vertex set
is X and for any two states x and y we draw an arc from x to y with weight p(y|x) if p(y|x) > 0.

We can think of the Markov chain as a simple random walk on this graph, where the probabil-
ity of moving from state x to y is given by the weight of the arc from x to y and the distribution
of the starting vertex is given by X0.

Example 3.13. We can think of the following simplified model of the evolution of the weather.
Our stochastic process has three state X = {sun, rain, snow} = {N,R, S}

Our transition matrix is given as follows

P =

N R S

N 0 1/2 1/2
R 1/4 1/2 1/4
S 1/4 1/4 1/2

.

So, we never have two sunny days in a row - if a day is sunny then the next day is equally likely
to be rainy or snowy. On rainy or snow days the next day has probability 1/2 to have the same
weather, and probability 1/2 to change to one of the other options uniformly.
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In this case the digraph of this Markov chain has vertex set V = {N,R, S} and arcs

e1 = (N,R), e2 = (N,S), e3 = (R,N), e4 = (R,R),

e5 = (R,S), e6 = (S,N), e7 = (S,R), e8 = (S, S).

with weights

w(e1) = 1/2, w(e2) = 1/2, w(e3) = 1/4, w(e4) = 1/2,

w(e5) = 1/4, w(e6) = 1/4, w(e7) = 1/4, w(e8) = 1/2.

.

By the Markovian property it is relatively easy to write down the joint distribution of
(X0, . . . , Xn) as

P[X0 = x0, X1 = x1, . . . , Xn = xn] = ν(x0)p(x1|x0)p(x2|x1) . . . p(xn|xn−1), (3.2)

and from this it is also clear what the conditional distribution of Xn, given X0 is.

Lemma 3.14. Let (Xn)n≥0 be a Markov chain with initial distribution ν and transition matrix
P . Then

p(n)(y|x) := P[Xn = y | X0 = x] = (Pn)xy ,

that is, the matrix given by
(
p(n)(y|x)

)
x,y∈X

is the nth power of P .

If we consider ν as a row vector, then pXn = νPn, that is

pXn(y) =
∑
x∈X

ν(x)p(n)(y|x).

Proof.

We will show that for a natural class of time-homoegenous Markov chains the entropy rate
exists, and can be easily calculated, and furthermore is independent of the choice of the initial
distribution ν.

The existence of the entropy rate would be clear if the Markov chain were stationary, by
Lemma 3.8. However, whilst is easy to verify that every stationary Markov chain is time-
homogeneous (exercise). The converse is not true in general, but will hold for sensible choices
of initial distribution.

Lemma 3.15. Let (Xn)n≥0 be a time-homogeneous Markov chain with initial distribution ν and
transition matrix P . Then the Markov chain is stationary if and only if νP = ν, that is, only if
ν is an eigenvector of P with eigenvalue one.

Proof.

In this case we call ν a stationary distribution for P , or for the Markov chain.
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Lemma 3.16. Let (Xn)n≥0 be a time-homogeneous Markov chain with a stationary initial dis-
tribution ν. Then the entropy rate exists and is given by

h =
∑
x∈X

ν(x)H(p(·|x)),

where
H(p(·|x)) = −

∑
y∈X

p(y|x) log2 p(y|x)

is the entropy of the probability vector which is the row of the transition matrix P indexed by x.

Proof.

We note that there is a trivial right eigenvector of P with eigenvalue one given by the all
ones vector 1 = (1, . . . , 1). Indeed, since P is stochastic, for all x ∈ X

(P1)x =
∑
y∈X

p(y|x) = 1.

More generally, a function f : X → R is called harmonic (with respect to P ) if, when viewed as
a column vector, it satisfies Pf = f . Since

(Pf)x =
∑
y∈X

p(y|x)f(y) =
∑

y : p(y|x)>0

p(y|x)f(y),

we can think of this as saying that the weighted average of the function f over the neighbourhood
of x in the digraph of the Markov chain is equal to f(x).

Hence, since the left and right eigenvalues of a matrix agree, there must be some vector ν
which is a left eigenvector of P with eigenvalue one. It remains to show that ν is a probability
vector. Arranging that ν sums to one is trivial, any linear scaling of an eigenvector lies in the
same eigenspace, however it is not obvious that ν is non-negative.

Lemma 3.17. Let (Xn)n≥0 be a time-homogeneous Markov chain with a finite state space X
and transition matrix P . Then there is at least one stationary probability distribution ν for P .

Proof.

Note that the same argument would apply to any accumulation point µ of the sequence µn.
Can we say when this stationary distribution is unique?

Definition 3.18. Let (Xn)n≥0 be a time-homogeneous Markov chain with a finite state space
X and transition matrix P . The Markov chain, and transition matrix, are called irreducible if
for every pair x, y ∈ X there is some n ∈ N such that p(n)(y|x) > 0. That is, for any pair of
states, there is some n such that we can transition from one state to the other in n steps with
positive probability.

If we think about the associated digraph of the Markov chain, then irreducibility is equivalent
to the property that this digraph is strongly connected - for any pair of vertices x and y there
is a directed path from x to y.

35



Proposition 3.19. Let (Xn)n≥0 be a irreducible time-homogeneous Markov chain with a finite
state space X and transition matrix P . Then there is a unique stationary distribution ν and
furthermore ν(x) > 0 for all x ∈ X .

Proof.

Corollary 3.20. Let (Xn)n≥0 be a irreducible time-homogeneous Markov chain with a finite
state space X and transition matrix P . Then

lim
n→∞

1

n

(
µ+ µP + µP 2 + . . .+ µPn−1

)
exists and is equal to the unique stationary distribution ν.

Proof.

Corollary 3.21. Let (Xn)n≥0 be a irreducible time-homogeneous Markov chain with a finite
state space X and transition matrix P . Then for any initial distribution µ, the entropy rate of
the Markov chain exists and is equal to the entropy rate of the Markov chain under its unique
stationary distribution (see Lemma 3.16).

Proof.

Definition 3.22 (Return time). If (Xn)n≥0 is a Markov chain with a finite state space X , then
for any x ∈ X we define

τx = inf{n ≥ 1: Xn = x},

which is the first time the chain is in state x after the start (where we define inf ∅ =∞). Note
that τx is a random variable! If X0 = x then we call τx the return time to x. A state x is called
recurrent if the Makrov chain returns to x almost surely, that is, if

P[τx <∞ | X0 = x] = 1,

and it is positive recurrent if in addition the return time has finite expectation, that is,

E (τx | X0 = x) <∞.

Theorem 3.23 (Ergodic Theorem for Markov chains). Let (Xn)n≥0 be a irreducible, time-
homogeneous Markov chain with a finite state space X . Then every state x ∈ X is positive
recurrent, and the (unique) stationary distribution ν is given by

ν(x) =
1

E (τx | X0 = x)
.

Furthermore, for any initial distribution µ and any function f : X → R

lim
n→∞

1

n

n−1∑
k=0

f(Xk) =
∑
x∈X

f(x)ν(x) almost surely.

The expression on the right hand side is a determinstic quantity, the space average of the
value f(x) - the average of f over the state space X under the stationary distribution ν. On
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the left hand side we have a random quantity, the time average of f over the trajectory of the
random process Xn and the theorem asserts that the two are almost surely equal.

In applications, we are often interested in the value of the right hand side, however if the state
space is large then it can be hard, or inefficient to compute the space average directly. On the
other hand, the time average can be approximated by simulating the Markov chain for a large
number of steps and calculating the time average. In this way we get a tool for approximating
the sum on the right hand side, which is know as the Markov chain Monte Carlo method.

3.3 The Asymptotic Equipartition Property

Let (Xn)n≥1 be a stochastic process with a finite state space X . For each n ∈ N we can consider
the joint distribution pn = pX1,...,Xn on X n, that is

pn(x1, . . . , xn) = P[X1 = x1, X2 = x2, . . . , Xn = xn].

Note that the sequence of distributions (pn)n≥1 (which are deterministic functions on X n),
determines all the probabilistic characteristics of the stochastic process.

Suppose that the entropy rate of the stochastic process

h = lim
n→∞

1

n
H(X1, . . . , Xn) = lim

n→∞

1

n
H(pn)

exists. Since for any random variable X we can write

H(X) = E(− log2 pX(X)),

as the expected value of the deterministic function − log2 ◦ pX applied to the random variable
X, we can apply this to the random vector (X1, . . . , Xn) to conclude that

1

n
H(X1, . . . , Xn) = E

(
− 1

n
log2 pn(X1, . . . , Xn)

)
.

Then the entropy rate h is the limit of the expected value of the random variables Yn =
− 1

n log2 pn(X1, . . . , Xn). A much stronger property than the limit of the expectation existing
would be that the random variables themselves converge (in probability or almost surely) to
some limiting random variable with finite expectation h.

Definition 3.24 (Asymptotic equipartition property). Let (Xn)n≥1 be a stochastic process with
a finite state space X whose entropy rate h exists. We say X has the asymptotic equipartition
property (AEP), if

− 1

n
log2 pn(X1, . . . , Xn) −→ h almost surely, as n→∞.

The asymptotic equipartition property makes a very strong prediction about the observed out-
come (xn)n≥1 of the stochastic process - with very high probability the quantity− 1

n log2 pn(x1, . . . , xn)
will be close to the entropy rate h, where the error in probability and in approximation to h is
tending to 0 with n.
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Example 3.25. Let X = {0, 1} and let (Xn)n≥1 be i.i.d with distribution Ber(θ), that is,

P[Xn = 1] = θ and P[Xn = 0] = 1− θ,

where 0 < θ < 1. For any bitstring (x1, . . . , xn) ∈ {0, 1}n, let

sn = x1 + . . .+ xn,

be the total number of ones, so that n − sn is the total number of zeroes. Let us write Sn for
the random variable X1 + . . .+Xn.

Since the sequence is i.i.d we can compute

pn(x1, . . . , xn) = θsn(1− θ)n−sn and so pn(X1, . . . , Xn) = θSn(1− θ)n−Sn .

Hence,

− 1

n
log2 pn(X1, . . . , Xn) = −

1

n
log2

(
θSn(1− θ)n−Sn

)
= −Sn

n
log2 θ −

(
1− Sn

n

)
log2(1− θ).

On the other hand, since the Xn are i.i.d, by Lemma 3.5 the entropy rate h exists and is
equal to

h = H(X1) = H(θ, 1− θ) = −θ log2 θ − (1− θ) log2(1− θ).

So, in this case, the statement that (Xn)n≥1 satisfies the AEP would be that almost surely

−Sn

n
log2 θ −

(
1− Sn

n

)
log2(1− θ) −→ −θ log2 θ − (1− θ) log2(1− θ).

Or, in other words, the AEP is equivalent to the statement that Sn
n → θ almost surely, which is

the strong law of large numbers.

In fact the argument above works for general for i.i.d sequences.

Lemma 3.26. Let (Xn)n≥1 be an i.i.d stochastic process with a finite state space X . Then
(Xn)n≥1 satisfies the AEP, where the entropy rate h = H(X1).

Proof.

There are perhaps two natural questions to ask at this point :

(I) Which classes of stochastic process have the AEP (does this include a nice large natural
class)?

(II) What is the practical application of knowing that we have the AEP?

Theorem 3.27. Let (Xn)n≥0 be a irreducible, time-homogeneous Markov chain with a finite
state space X . Then for any initial distribution, (Xn)n≥0 satisfies the AEP, where the entropy
rate h is given by the formula in Corollary 3.21 / Lemma 3.16.
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Proof.

What can we conclude from the fact that the AEP holds? Since convergence almost surely
implies convergence in probability, if the AEP holds then for any ε > 0

P
[∣∣∣∣− 1

n
log2 pn(X1, . . . , Xn)− h

∣∣∣∣ < ε

]
→ 1. (3.3)

In other words, there is some deterministic set inside the set of trajectories X n, which we can
specify ahead of time in terms of the deterministic function pn and the quantity h, such that
with very high probability the trajectory of the process lies inside this set.

Definition 3.28 (Typical set). Given a stochastic process (Xn)n≥1 which satisfies the AEP
with entropy rate h. For every n and (small) ε > 0 the typical set is given by

A(n)
ε =

{
x = (x1, . . . , xn) ∈ X n :

∣∣∣∣− 1

n
log2 pn(x1, . . . , xn)− h

∣∣∣∣ < ε

}
.

The following properties of typical sets follow immediately from the definitions.

Proposition 3.29. Given a stochastic process (Xn)n≥1 which satisfies the AEP with entropy
rate h. Then for all (small) ε > 0 the typical set has the following properties:

(a) There exists N(ε) such that for all n ≥ N(ε)

P[(X1, . . . , Xn) ∈ A(n)
ε ] > 1− ε.

(b) For all x = (x1, . . . , xn) ∈ A
(n)
ε ,

2−n(h+ε) < pn(x) < 2−n(h−ε).

(c) The size of the typical set satisfies

(1− ε)2n(h−ε) <
∣∣∣A(n)

ε

∣∣∣ < 2n(h+ε),

where the second inequality holds for all n, and the first for all n ≥ N(ε).

Proof.

So, from (a) we see that pn is almost concentrated on the set A
(n)
ε , and from (b) and (c)

we see furthermore that it is almost equidistributed on this set (and this is where the name
asymptotic equipartition property comes from)!

In general, the fact that pn is concentrated on this ‘smaller’ set A
(n)
ε will be most useful when∣∣∣A(n)

ε

∣∣∣≪ |X n|, which in light of (c) will be the case when

2n(h+ε) ≪ |X n| ⇐⇒ h+ ε < log2 |X |,
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in which case A
(n)
ε will be exponentially smaller than X n. When the Xn are i.i.d and uni-

formly distributed, then h = log2 |X |, and the typical set consists of almost all of the possible
trajectories.

Whilst there are possibly many more possible trajectories in X n than typical sequences in

A
(n)
ε , it is vanishingly unlikely that the observed trajectory lies outside of A

(n)
ε , and so these

non-typical trajectories play no significant role in the analysis of the process.

4 Data compression and Codes

4.1 Block codes

Suppose we have a set of elements X , for example the alphabet of some language, and we wish
to encode an element x ∈ X , using a binary string or in general the elements of some finite set
Σ. It is clear that we can represent each element of x ∈ X by a unique binary string of length
n = ⌈log |X |⌉ and so we can encode an arbitrary element using at most n bits of information,
but equally we need at least 2n elements to uniquely encode each element of X .

However if there is some distribution, given by a random variable X on X which we call a
source, in which some elements are more likely to appear than others, then it might be that
we can exploit this to find an encoding whose length is shorter on average, or one which is
deterministically shorter, but has some (small) probability of error.

Encoding function
C

Decoding function
g

Source
X

Code
C(X)

Estimate
X̂

Definition 4.1 (Encoding scheme). An encoding scheme is a triple (X,C, g) where X is some
discrete random variable taking values in a finite set X , C is a code, that is a mapping

C : X →
∞⋃
n=1

{0, 1}n := {0, 1}+,

and g : {0, 1}+ → X̂ := X ∪ {⊥} is a decoding function.

That is, the source X is encoded as C(X), and is decoded by the decoding function to
X̂ = g(C(X)). If C is injective, then we can take the decoding function g to be any function
such that C ◦ g is the identity on X and then X = X̂ and this is a lossless encoding, otherewise
we will also be interested in the error probability perr = P[X̂ ̸= X].

In general, we might wish to encode not just one element x ∈ X , but a string of elements
(x1, . . . , xn), which are then generated according to some stochastic process (Xn)n≥1. In this
case we can ask whether it is more efficient to encode each element individually, or instead to
encode longer strings.
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To begin with, we will consider the case where we encode the whole string, and so in general
our source will be a random vector (X1, . . . , Xn), and we are interested in finding a coding
C(n) : X n → {0, 1}+, either lossless or with error probability tending to zero, which is particularly
efficient, either in terms of the average number of symbols we use in a lossless encoding, or
perhaps in terms of the maximum number of symbols we use in a lossy encoding.

More precisely, for a lossless encoding we want to minimise

L(n) = L(n)
(
C(n)

)
= E

(
1

n
ℓ(C(n)(X1, . . . , Xn))

)
,

where ℓ(·) measures the length of a binary string. The AEP gives us a powerful method of data
compression, which allows us to encode messages with a close to optimal rate.

Theorem 4.2. Let (Xn)n≥1 be a stochastic process which satisfies the AEP with rate h. Then
there is a lossless encoding C(n) : X n → {0, 1}+ such that

lim
n→∞

L(n) ≤ h.

Proof.

Of course, if we just insist the encoding is lossless, then one can construct an encoding
function minimising L(n) by greedily assigning the most likely strings x ∈ X n to the shortest
strings in {0, 1}+. However, the code we constructed in Theorem 4.2 has some extra properties
which we will see later are useful.

On the other hand, if we consider lossy encoding, we can hope to minimise even the maximum
number of symbols we use. The simplest case would be to try to minimise the number of symbols
used in some block code, which encodes sequences of length n as bitstrings of some fixed length
m. In this case, given a block code C(n) : X n → Σm we say it has rate r(n) = m

n .

Theorem 4.3 (Shannon’s source coding theorem for block codes). Let (Xn)n≥1 be a stochas-
tic process which satisfies the AEP with rate h. Suppose r(n) is a sequence of rates with
limn→∞ r(n) = r.

• If r < h then for any block code C(n) : X n → {0, 1}m with rate r(n), limn→∞ p
(n)
err > 0;

• If r > h then there exists some block code C(n) : X n → {0, 1}m with rate r(n) such that

limn→∞ p
(n)
err = 0

4.2 Variable length codes

However, Theorem 4.2 does not lead to efficient construction of codes, and the codes are not
particular useful in application. More useful are codes which assign codewords to each element
of X and encode a string (X1, . . . , Xn) by concatenating the code words. It is much easier to
encode messages using such a code, and under certain conditions, also much easier to decode.
However, we will see it is still possible to construct codes of this sort which are essentially as
efficient as that of Theorem 4.2.
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In what follows we will deal with more general alphabets than binary. Given a set Σ let us
write Σ∗ for the set of finite strings (words) of elements of Σ

Σ∗ = {w = a1a2 . . . an : n ≥ 0, ai ∈ Σ},

where ℓ(w) := n is the length of the word w. When n = 0 we have the empty word ε ∈ Σ∗, and
we will write Σ+ = Σ∗ \ {ε} for the set of non-empty words. Given a word w = a1 . . . an for any
k ≤ n we say v = a1 . . . ak is a prefix of w.

Definition 4.4 (Source code). A source code is a mapping

C : X → Σ+,

where C(x) is the codeword of x ∈ X . We define an extension of C to X+, which we still denote
by C : X+ → Σ+, by concatenation via

C(x1 . . . xk) = C(x1) . . . C(xk).

Given a source code and a discrete random variable X taking values in X , the expected code
length is defined as

LC = E
(
ℓ(C(X))

)
=
∑
x∈X

ℓ(C(x))pX(x).

Example 4.5. Let X = {a, b, c, d} and let Σ = {0, 1} and suppose X has distribution

p(a) =
1

2
, p(b) =

1

4
, p(c) = p(d) =

1

8
.

On possible source code would be

C(a) = 00, C(b) = 10, C(c) = 10, C(d) = 11.

In this case all codewords have length two, and so it is clear that LC = 2.

However, a better code would be as follows:

C∗(a) = 0, C∗(b) = 10, C∗(c) = 110, C∗(d) = 111,

where we can compute that

LC =
1

2
· 1 + 1

4
· 2 + 1

8
· 3 + 1

8
· 3 =

7

4
.

Of course, minimising LC is a trivial optimisation problem - we simply assign the shortest
codewords to the most likely elements of X . However, the extension of C to Σ+ might cause
ambiguities when there are distinct sequences of elements (x1, x2, . . . , xk) and (x′1, x

′
2, . . . , x

′
k) ∈

X+ such that
C(x1) . . . C(xk) = C(x′1) . . . C(x′k).

Definition 4.6 (Unique decodability). (a) A source code C : X → Σ+ is called non-singular
if the mapping is injective, that is, if different elements have different codewords.

(b) C is called uniquely decodable if the extension C : X+ → Σ+ is non-singular.
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(c) C is called prefix-free, or instantaneous, if no codeword is a prefix of another codeword,
that is, whenever x ̸= y ∈ X then C(x) is not a prefix of C(y).

It is clear that a uniquely decodable code must be non-singular. It is also easy to see that
a prefix-free code is uniquely decodable - if C(x1) . . . C(xk) = C(x1 . . . xk) = C(x′1) . . . , x

′
m) =

C(x′1) . . . C(x′m) then since C(x1) is not a prefix of C(x′1) and vice versa, it follows that C(x′1) =
C(x1) and hence x1 = x′1, since C is non-singular. The result then follows by induction.

Prefix-free codes are called instantaneous as they can be decoded in ‘real-time’. If Alice
encodes a word x1 . . . xn by C(x1 . . . xn) and transmits the codeword to Bob, then for any k
Bob can decode the prefix x1 . . . xk as soon as he has recevied the prefix C(x1) . . . C(xk) of the
codeword.

Example 4.7. Let X = {a, b, c, d} and let Σ = {0, 1} as before.

(a) The code
C(a) = 0, C(b) = 010, C(c) = 01, C(d) = 10,

is non-singular, but it is not uniquely decodable, since C(ad) = 010 = C(b).

(b) If C is a prefix code and
←−
C is the code obtained by reversing each codeword, then

←−
C is

still uniquely decodable (since reversing a string is an involution on Σ+). However,
←−
C is

not in general prefix-free.

For example, the code C∗ from Example 4.5 is prefix-free, and so

C(a) = 0, C(b) = 01, C(c) = 011, C(d) = 111,

is uniquely decodable, however it is not prefix-free, as C(a) = 0 is a prefix of C(b) = 01.

(c) Let
C(a) = 10, C(b) = 00, C(c) = 11, C(d) = 110.

It can be shown (exercise) that C is uniquely decodable, but it is not instantaneous, in
that there are arbitrarily long words w ∈ X+ such that Bob cannot decode any prefix of
w before having received the entire codeword C(w). For example cb . . . b and db . . . b both
encode to 110 . . . 0, with the only difference being the parity of the string of 0s, which Bob
cannot discover until the last element is transmitted.

So, rather than asking to minimise the expected length of any code, it is reasonable to
restrict our attention to codes that are uniquely decodable, so that sequences of codewords can
be unambiguously decoded. Stronger still would be to insist that our code is prefix-free, in which
case we should expect our code to have to be longer. Rather surprisingly, it turns out that the
expected length of the shortest uniquely decodable code in fact coincides with the expected
length of the shortest prefix-free code, and that both are controlled by the entropy of X.

A useful tool will be be Kraft-McMillan inequality, which bounds from below the length of
the codewords in a prefix-free code.

Lemma 4.8. [Kraft-McMillan inequality]
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(1) Let C : X → Σ+ be a prefix-free code with |Σ| = D ≥ 2. Then∑
x∈X

D−ℓ(C(x)) ≤ 1.

(2) Let {ℓx : x ∈ X} be a (multi)-set of numbers such that∑
x∈X

D−ℓx ≤ 1,

then there exists a prefix-free code C such that ℓ(C(x)) = ℓx for each x ∈ X .

Remark 4.9. In fact, the bound in (1) can be shown to hold for uniquely decodable codes.

Proof.

One useful thing to notice is that Kraft’s inequality allows us to rephrase the problem of find-
ing codes of minimal expected length as an integer optimisation problem - Given the distribution
p : X → [0, 1] we wish to find ℓ = (ℓx)x∈X ∈ NX

0 which

minimises
∑
x∈X

ℓxp(x) subject to the constraint
∑
x∈X

D−ℓx ≤ 1.

This problem can be solved algorithmically in a number of ways.

For example, we can solve the corresponding continuous optimisation problem, noting that
we may strengthen the constraint to

∑
x∈X D−ℓx = 1 in this case, using Lagrange multipliers.

This gives an approximate solution ℓx and if you ‘round up’, the values ⌈ℓx⌉ will satisfy the
constraint from Kraft’s inequality and you can use the implicit algorithm therein to build a code
which is close to optimal.

An alternative method uses entropy, and can also give a nearly matching upper bound. Since
we are working over a general alphabet Σ of size D, which might not always be equal to two, it
makes sense to consider a slightly different notion of entropy, as follows

HD(X) = −
∑
x∈X

p(x) logD p(x) = − 1

log2D
H(X).

Theorem 4.10. [Source coding theorem for symbol codes] Let C : X → Σ+ be a prefix-free source
code to an alphabet Σ of size D and let X be a discrete random variable taking values in X .
Then

LC ≥ HD(X),

with equality if and only if p(x) = D−ℓ(C(x)) for all x ∈ X .

Conversely there exists a prefix-free code C such that

LC ≤ HD(X) + 1.

Proof.
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Remark 4.11. Since Kraft’s inequality holds for uniquely decodable codes, the first inequality in
Theorem 4.10 holds for any uniquely decodable codes. In particular, Theorem 4.2 is optimal if we
insist the code is uniquely decodable (and in fact, it is easy to check that the code we constructed
there is even prefix-free).

If we are transmitting then a sequence (Xn)n≥1 of i.i.d elements distributed according to X1,
then we can see that the average number of symbols used to encode each element of X is given
by LC , and so Theorem 4.10 leads to a code with the same asymptotic rate as that given by
Theorem 4.2 (in the case where D = |Σ| = 2), since the entropy rate of an i.i.d sequence is given
by H(X1).

However, in general, if we are transmitting a sequence of elements from X , which come now
from some stochastic process (Xn)n≥1, even if the process if time-homogeneous, so that each Xi

has the same distribution, it might not be the case that a code which minimises the expected
length of each individual codeword, is the one which minimises the length of an encoded message
(X1, . . . , Xn) of longer length. Moreover, we may be able achieve a smaller expected length of
codeword per symbol transmitted, so an encoding scheme with a smaller rate, if we group our
symbols together and encode the elements of X n rather than of X .

In this case, given a joint distribution (X1, . . . , Xn) on X and a code C(n) : X n → Σ+ we
could ask about the expected codeword length per symbol, or the rate

L(n) = E
(
1

n
ℓ(C(n)(X1, . . . , Xn)

)
.

If we insist that the code C(n) is prefix-free, then Theorem 4.10 implies that the optimal expected
length L∗ satisfies

HD(X1, . . . , Xn) ≤ n · L(n) ≤ HD(X1, . . . , Xn) + 1,

and hence
1

n
HD(X1, . . . , Xn) ≤ L(n) ≤ 1

n
HD(X1, . . . , Xn) +

1

n
.

Therefore, if the limit

hD := lim
n→∞

1

n
HD(X1, . . . , Xn)

exists, then we have a natural bound for this quantity.

However, this limit is just precisely, up to a multiplicative factor of log2D, the entropy rate
of the process (Xn)n≥1. Hence we see that the code from Theorem 4.2 does indeed have an
optimal rate, and we get another process by which we can construct such codes.

Theorem 4.12. Let (Xn)n≥1 be a stochastic process whose entropy rate h exists. Then the
minimal expected rate of a prefix-free code satisfies

lim
n→∞

L(n) = hD :=
h

log2D
.

4.3 Huffman Codes

Given a source X, Theorem 4.10 tell us that for any prefix-free source code C on an alphabet
Σ of size D, LC ≤ HD(X), and conversely, gives us via Kraft’s inequality (Lemma 4.8) a way
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to construct a prefix-free C such that LC ≤ HD(X) + 1, however in general these codes will not
be optimal.

However, Huffman gave a simple algorithm which, given a distribution p on X with |X | ≥ 2,
produces an optimal prefix-free binary code.

Whilst this works for all alphabet sizes, let us focus now on the case Σ = {0, 1}. We can
think of Σ∗ as the infinite binary tree, whose root corresponds to the empty string ε, and where
each vertex labelled w has two children labelled w0 and w1, which we call siblings. Given a
string w ∈ Σ+, let us write w′ for its sibling.

When is a string w a prefix of another string v? Precisely when the unique path from the
root ε to v passes through w. In particular, if we have a prefix-free code, we can build a finite
subtree T whose leaves are precisely the codewords by taking the union of these paths from the
codewords to the root. For any other vertex in T , at least one child also lies in T .

Huffman’s algorithm works by constructing, for each distribution p on X , an appropriate
subtree T (p), whose leaves are labelled by the elements of X .

The algorithm is recursive - if N := |X | = 2, then we take T (p) to be the tree consisting of
the root and its two children.

Otherwise, we start by sorting the elements X = {x1, . . . , xN} such that p(x1) ≥ p(x2) ≥
. . . ≥ p(xN ). Note that this ordering is not necessarily unique, and this may change the output
of the algorithm.

We define a new set X ′ = {x′1, . . . , x′N−1}, and a probability distribution p′ on X ′ by

p′(x′i) =

{
p(xi) if i ≤ N − 2

p(xN−1) + p(xN ) if i = N − 1.

We build T (p′(x′1), . . . , p
′(x′N−1)) and we form T (p(x1), . . . , p(xN )) by taking the leaf labelled

x′N−1 and adding its two children as leaves, labelled xN−1 and xN . All other leaves labelled x′i
with i ≤ N − 2 we label with xi.

We call a code constructed in this way a Huffman code.

Alternatively we can think of building the tree starting from the leaves up - we start with an
independent set of vertices labelled p(x1) to p(xN ) and recursively we choose the two vertices in
the forest which have no parent and have the smallest labels p1 and p2 and we add a new vertex,
which is joined as a parent to these two vertices, and has label p1 + p2. We continue until there
is a unique vertex in the forest with no parent. By construction this graph is a binary tree, and
by choosing an arbitrary {0, 1} labelling of the edges from a vertex to its children we can assign
to each leaf a string in {0, 1}+, giving us a prefix-free code.

Example 4.13. Suppose X = {x1, x2, x3, x4, x5} and

p(x1) = 0.4, p(x2) = 0.2, p(x3) = 0.15, p(x4) = 0.15, p(x5) = 0.1.

So, in the first step the vertices with the smallest labels are x4 and x5 and so we would merge
them to a new vertex, which we might call x4,5 with label p(x4,5) = p(x4) + p(x5) = 0.25. Now
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the vertices without parents are x1, x2, x3 and x4,5, with labels

p(x1) = 0.4, p(x4,5) = 0.25, p(x2) = 0.2, p(x3) = 0.15,

and so the vertices with the smallest labels are x2 and x3, and in the next step we merge them
to a new vertex x2,3 with label p(x2,3) = p(x2)+p(x3) = 0.35. Now the vertices without parents
are x1, x2,3 and x4,5 with labels

p(x1) = 0.4, p(x2,3) = 0.35, p(x4,5) = 0.25,

and so the vertices with the smallest labels are x2,3 and x4,5, and in the next step we merge
them to a new vertex x2,3,4,5 with label p(x2,3,4,5) = p(x2,3) + p(x4,5) = 0.6. Now the vertices
with parents are x1 and x2,3,4,5 with labels

p(x2,3,4,5) = 0.6, p1 = 0.4,

and so the vertices with the smallest labels are x2,3,4,5 and x1, and in the last step we merge
them to a new vertex x1,2,3,4,5 with label p(x1,2,3,4,5) = 1.

If we label the edges so that the edge labelled 1 goes the the child with the smaller label,
then we end up with the following code C : X → Σ∗

C(x1) = 1, C(x2) = 000, C(x3) = 001, C(x4) = 010, C(x5) = 011.

In the example above we can calculate that the expected code length is then

LC = 0.4 + 3 · (0.2 + 0.15 + 0.15 + 0.1) = 2.2

and the entropy of p is ≈ 2.15. So, this code is definitely close to the theoretical limit of H(p),
and in fact, it can be shown that no other binary code will do better than the Huffman code.
Given a source X, let us say a prefix-free binary code C if optimal if LC ≤ LC′ for any other
prefix-free binary code C ′.

Theorem 4.14. Huffman codes are optimal binary codes.

Let us start by showing the following

Lemma 4.15. Let X be a source on X and let C : X → {0, 1}+ be an optimal prefix-free binary
code. Then

(1) If p(x) > p(y), then ℓ(C(x)) ≤ ℓ(C(y));

(2) Let ℓmax = max{ℓ(w) : w ∈ C(X )} and

W = {w ∈ C(X ) : ℓ(w) = ℓmax},

then for all w ∈W , its sibling w′ ∈W .

Proof.
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Proposition 4.16. Let X be a source on X and let C : X → {0, 1}∗ be an optimal prefix-free
binary code. If X = {x1, . . . , xN} is some ordering of X such that p(x1) ≥ p(x2) . . . ≥ p(xN )
then there is some permutation π on X such that C ′ = C ◦ τ is an optimal prefix-free binary
code such that

C ′(xN−1), C
′(xN ) ∈W and they are siblings,

where W is as in Lemma 4.15 (2).

Proof.

We call codes satisfying the conclusion of Proposition 4.16 canonical for the ordering X =
{x1, . . . , xN}.

At this point we are ready to prove that Huffman codes are optimal.

Proof of Theorem 4.14.
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5 Information Channels

A channel is a way to model the transmission of some message. We have some set X of messages
which are to be transmitted, potentially in some encrypted form, and a set Y of possible outputs,
messages received by the other party, where the output might not depend deterministically on
the message due to some inherent noise in the channel, which might randomly change the output,
or even some randomness in the encryption process.

Definition 5.1 (Discrete channel). A discrete (memoryless) channel

C = (X , P,Y)

consists of two finite sets X and Y and a stochastic transition matrix P = (p(y|x))x∈X ,y∈Y .

Channel
P

Message
X

Output
Y

That is, the rows of P are index by X , the columns by Y and each row is a conditional probability
distribution p(·|x) on Y, that is p(y|x) ≥ 0 for all y ∈ Y and∑

y∈Y
p(y|x) = 1.

We think of the distribution p(·|x) as being the distribution of the output of the channel, the
received message y ∈ Y when x is the input.

Example 5.2. (a) The binary symmetric channel has X = Y = {0, 1} where each message

has a ε chance of resulting in the wrong output and so P =

(
1− ε ε
ε 1− ε

)
.

(b) The binary erasure channel has X = {0, 1} and Y = {0, 1,⊥} and each message has (1−ε)
chance of being transmitted correctly and a ε chance of being ‘lost’, and outputting ⊥,

and so P =

(
1− ε 0 ε
0 1− ε ε

)
Definition 5.3 (Channel extension). Given a channel C = (X , P,Y) the nth channel extension
is the channel

Cn = (X n, Pn,Yn)

where

(Pn)x,y = pn(y|x) = pn(y1, . . . , yn|x1, . . . , xn) =
n∏

k=1

p(yk|xk).

In other words, the nth channel extension is the channel we get by sending n consecutive,
independent messages over the channel C.

Typically, we are interested in the behaviour of the channel when the input arrives as some
X -valued random variable X, with some distribution pX . In this case the output Y is also a
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random variable, which inherits the randomness from X, as well as some of the randomness
inherent in the channel described by P .

For a fixed channel, and so a fixed P , we might hope to choose the input distribution pX in
some optimal way. Let M(X ) be the collection of all probability distributions on X . In other
words, if X = {x1, . . . , xn}, then we can think ofM as consisting of all vectors (p1, . . . , pn) ∈ Rn

with non-negative entries and sum one, with p(xi) = pi.

One measure of the ‘quality’ of the channel is how well the message is preserved, and one way
to measure this would be to measure how much information about the message X is contained
in the random variable Y , motivating the following definition.

Definition 5.4 (Channel capacity). Given a channel C = (X , P,Y) the channel capacity is
defined as

cap(C) = max{I(X ; Y ) : pX ∈M(X )}.

Remark 5.5. Note that, pX and P together determine pX,Y and hence pY and I(X ; Y ).
Indeed,

pX,Y (x, y) = pX(x)pY |X(y|x) = pX(x) (P )x,y and pY (y) =
∑
x∈X

pX,Y (x, y).

Hence, we can consider the function fromM(X )→ R given by pX 7→ I(X ; Y ). This is then
a continuous function, on a compact setM(X ) ⊆ RX and so it indeed achieves some maximum,
which is then the channel capacity. Note that this maximum is not necessarily achieved by a
unique distribution pX !

Note that, by Corollary 2.33 and Lemma 2.22,

0 ≤ I(X ; Y ) = H(X)−H(X | Y ) ≤ H(X) ≤ log2 |X |,

and so
0 ≤ cap(C) ≤ log2 |X |.

Example 5.6. (a) Noiseless binary channel : Suppose we take the binary symmetric channel

withb ε = 0, that is X = Y = {0, 1} and P =

(
1 0
0 1

)
.

It is easy to verify that in this case X = Y and so for any pX , I(X ; Y ) = I(X ; X) =
H(pX), and in particular

cap(C) = max{H(pX) : pX ∈M(X )} = log2 |X | = 1,

which is achieved only for the uniform distribution (1/2, 1/2). Hence cap(C) = 1.

(b) Channel with non-overlapping outputs : More generally, for any transition matrix P where
X is determined by Y , we have by Lemma 2.8

I(X ; Y ) = H(X)−H(X|Y ) = H(X) ≤ log2X ,

where equality is again achieved uniquely by the uniform distribution on X. Hence
cap(C) = log2X .
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(c) Noisy typewriter : Suppose X = {x1, . . . , x2N} is a set of letters on a rather improbable
circular typewriter, where when I go to type a letter xi, I miss and hit the letter xi+1 with
probability 1

2 (with addition mod 2N). Hence Y = X and the transition matrix

P =


1
2

1
2 0 . . . 0

0 1
2

1
2 . . . 0

...
. . .

. . .
...

1
2 0 0 . . . 1

2

 .

Given any distribution pX we can calculate

H(Y |X) =
2N∑
j=1

pX(xj)H(Y | X = xj) =
2N∑
j=1

pX(xj)H(1/2, 1/2) = 1,

and so

I(X ; Y ) = H(Y )−H(Y | X) = H(Y )− 1 ≤ log2 2N − 1 = log2N,

and equality is achieved whenever pY is uniform. Hence cap(C) will be log2N if there is
some pX such that pY is uniform, and it is easy to verify that when pX is uniform, so is
pY . Hence cap(C) = log2N .

However, in this case there are multiple optimal distributions. For example if X is uni-
formly distributed on the odd elements, or uniformly distributed on the even elements,
then Y is again uniformly distributed on Y. More generally, any convex combination of
these two distributions acheives the optimal capacity.

A small remark here is that, when X is distributed on the even or odd elements, then this
example reduces to a channel with non-overlapping outputs.

(d) Binary symmetric channel : Recall that X = Y = {0, 1} and P =

(
1− ε ε
ε 1− ε

)
.

In this case we can again compute

I(X ; Y ) = H(Y )−H(X | Y ) =

= H(Y )−H(ε, 1− ε)

≤ 1−H(ε, 1− ε),

and it is easy to verify that if X is uniformly distributed, then so is Y , and so equality is
achieved. Hence cap(C) = 1−H(ε, 1− ε).

(e) Binary erasure channel : Recall that X = {0, 1} and Y = {0, 1,⊥} and P =

(
1− ε 0 ε
0 1− ε ε

)
.

It is easy to see that, for any distribution pX ,

P[Y = ⊥] = P[X = 0] · P[Y = ⊥ | X = 0] + P[X = 1] · P[Y = ⊥ | X = 1]

= εpX(1) + εpX(0)

= ε

and for any i ∈ {0, 1}

P[X = i | Y = ⊥] = P[X = i, Y = ⊥]
P[Y = ⊥]

= pX(i).
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Furthermore, (X|Y = i) is constant for i ∈ {0, 1}. Hence

I(X ; Y ) = H(X)−H(X|Y )

= H(X)− P[Y = 1]H(X|Y = 1)− P[Y = 0]H(X|Y = 0)− P[Y = ⊥]H(X|Y = ⊥)
= H(X)− 0− 0− εH(X)

= (1− ε)H(X) ≤ 1− ε.

Again, it is easy to verify that equality is achieved only when H(X) = 1, and so when pX
is uniform. Hence cap(C) = 1− ε.

(f) Non-symmetric binary channel : Suppose X = Y = {0, 1} but now the probability of

error is different for 0 and 1, so that P =

(
1− α α
β 1− β

)
.

The distribution of X can be described by a single parameter pX = (1 − t, t) and so for
fixed α and β the mutual information I(X ; Y ) is a (continuous) function of t, where
t ∈ [0, 1], which can be maximised using, for example, Lagrange multipliers (exercise).

Definition 5.7 (Weakly symmetric channel). A channel C = (X , P,Y) is called weakly symmet-
ric if

(i) All rows p(·|x) for x ∈ X are permutations of each other;

(ii) All columns p(y|·) for y ∈ Y have the same (constant) sum.

Proposition 5.8. If C = (X , P,Y) is a weakly symmetric channel, then

cap(C) = log2 |Y| −H(p(·|x0)),

where x0 ∈ X is arbitrary.

Proof.

Another nice property of the channel capacity is that the capacity of the nth channel extension
is determined by the channel itself.

Lemma 5.9. Let C = (X , P,Y) be a channel and let Cn be the nth channel extension. Then

cap(Cn) = n · cap(C).

Proof.

5.1 Shannon’s channel coding theorem

Let us try to give a practical meaning to the channel capacity.

Suppose Alice wishes to transmit a message from some input set W to Bob through a noisy
channel C = (X , P,Y). For example, W ⊆ X+ might be some set of phrases over the alphabet
X and Alice will independently transmit the symbols one by one through the channel, where the
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output Y = X that Bob receives is a symbol that may or may not agree with the transmitted
symbol.

Now, Bob would like to recreate the message, so he should have some function g : Y+ → W
which represents his guess of what the input was, given the observed output.

Since the channel is noisy, there is some chance Bob’s guess will be incorrect. We could
reduce this chance by sending a longer sequence of symbols, perhaps by sending the entire
message twice, or via some more complicated encoding scheme. However, this comes then at the
cost of a longer transmission. Ideally we would like to keep this error of failure small, using as
few transmissions as possible.

Definition 5.10 ((M,n)-codes). An (M,n)-code for the channel C = (X , P,Y) consists of the
following:

• A set W of messages, with |W| = M ,

• A mapping x(n) : W → X n, which we call the codebook,

• A function g : Y → Ŵ, where Ŵ = W or Ŵ = W ∪ {⊥}, with the erasure (or dummy)
symbol ⊥.

Remark 5.11. Note the word code here does not have the same meaning as in Section 4.

The rate of an (M,n)-code is given by

R =
log2M

n
.

The rate is then measured in bits per transmission

Codebook
x(n)

Channel
Pn

Decoding function
g

Message
W

Codeword
Xn

Output
Yn

Estimate
Ŵ

For example, if we have a binary channel, with X = {0, 1}, then in order to encode the
elements of W by distict codewords, binary sequences of length n, we would need n = ⌈log2M⌉.
In this case the rate would be equal to one.

However, since these binary sequences may be corrupted by the channel, the likelihood that
Bob’s guess is correct will be closely related to the probability that any bit is incorrectly trans-
mitted, which may be very large. Hence, in order to make more accurate guesses, it might be
necessary to take a larger n, and so longer transmissions, and enocde the messages in some
robust manner, at the expense of decreasing the rate.

Definition 5.12 (Probability of error). Given a channel C = (X , P,Y) and an (M,n)-code
(W,xn, g) we define the conditional probability of error, given w ∈ W, as the probability λw

that if we encode the message w, transmit the encoded message across the channel and then
decode, that we do not recover w. That is

λ(n)
w =

∑
y∈Yn : g(y)̸=w

p
(
y|x(n)(w)

)
.
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The maximal probability of error is defined as

λ(n)
max = max

{
λ(n)
w : w ∈ W

(
}.

The average probability of error if defined as

p(n)err =
1

M

∑
w∈W

λ(n)
w .

In the above, it can be useful to think of a random variable W distributed uniformly on
W (which is independent of the channel). The codebook transforms W into a random vector
x(n)(W ) = (X1, . . . , Xn), which is then transmitted through the channel, with output the ran-

dom vector (Y1, . . . , Yn). This output is then decoded as Ŵ = g(Y1, . . . , Yn), which is a random

variable distributed on Ŵ. In this this case we can express

λ(n)
w = P

[
Ŵ ̸= w |W = w

]
and perr = P

[
Ŵ ̸= W

]
.

Note that in the above
W → (X1, . . . , Xn)→ (Y1, . . . , Yn)→ Ŵ

is a Markovian quadruple.

The specific question we will be interested in is how efficiently, in terms of the rate of the
code, can we achieve (arbitrarily) small maximum error probability. That is, given ε > 0, for

what rate R can we achieve λ
(n)
max ≤ ε.

It is not apriori obvious that we would not need increasing rate, as a function of ε, to achieve
smaller and smaller error probabilities. Indeed, if we fix M and n, then there are only finitely
many choices of codebook x(n) and decoding function g, and (for non-trivial channels) each lead

to a strictly positive maximum probability of error λ
(n)
max. In particular, the minimum over all

(M,n)-codes of λ
(n)
max will also be strictly positive, and so if we fix M and n we cannot reduce

the error probability arbitrarily.

However, it will turn out that for certain rates, if we allow the length of our codewords to
grow, we can achieve any maximum error probability, however small.

Definition 5.13 (Achievable rates). A real number R > 0 is an achievable rate for the channel

C if there is a sequence of (Mn, n)-codes, with maximal probability of error λ
(n)
max such that the

rate Rn = log2 Mn

n satisfy

lim
n→∞

Rn = R and lim
n→∞

λ(n)
max = 0.

In other words, R is achievable if for any ε > 0 there is some (Mn, n)-code with rate Rn > R−ε
and λ

(n)
max < ε.

It turns that the capacity of a channel controls the achievable rates.

Definition 5.14. The achievable capacity of a channel C is defined as

R∗ = sup{R : R is an achievable rate for C}.
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Remark 5.15. We note that this supremum is in fact an attained maximum.

Theorem 5.16 (Shannon’s channel coding theorem). For any channel C it achievable capacity
R∗ is equal to the channel capacity cap(C).

We will find that it is relatively easy to show that R∗ ≤ cap(C), that is, every achievable rate
R satisfies R ≤ cap(C). It will be rather more difficult to show that if R < cap(C) then R is
achievable, since to do so we will have to construct sequences of (Mn, n)-codes with rate tending
to R.

Shannon’s original proof, while mathematically ingenious, is merely an existence proof - it
does not provide an explicit algorithm to construct such (Mn, n)-codes. It is one of the earliest
examples of a proof via the probabilistic method.

Let us start by showing the ‘easy’ half of Shannon’s channel coding theorem, that the achiev-
able capacity of a channel is at most the channel capacity.

Proof that R∗ ≤ cap(C).

To prove the other direction, R∗ ≥ cap(C), we have to produce a good sequence of (Mn, n)-
codes, so we have to build clever codebooks and decoding functions that work well with the
channel C.

We start with the following lemma, which tells us that it is sufficient to bound the average
probability of error, which is easier to work with, due to the nice equality perr = P[Ŵ ̸= W ].

Lemma 5.17. A real number R > 0 is an achievable rate for a channel C if and only if there is a

sequence of (Mn, n)-codes, with average probability of error p
(n)
err such that the rates Rn = log2 Mn

n
satisfy

lim
n→∞

Rn = R and lim
n→∞

p(n)err = 0.

Proof.

Let us assume without loss of generality thatW = {1, . . . ,Mn}. We can think of the codebook
x(n) : W → X n as a large (Mn × n) matrix:

x(n) =


x1(1) x2(1) . . . xn(1)
x1(2) x2(2) . . . xn(2)

...
...

. . .
...

x1(M) x2(M) . . . xn(M)


where x(n)(i) = (x1(i), x2(i), . . . , xn(i)) is the codeword corresponding to the ith message in
W. One could also think of this as a phyiscal book, where on each page there is some vector
(x1(i), x2(i), . . . , xn(i)) which is the codeword corresponding to some message.

Alice will transmit one of these codewords across the channel Cn and Bob will receive a trans-
mission (y1, y2, . . . , yn). He then has to ‘choose’ which of the possible codewords (x1(i), x2(i), . . . , xn(i))
he thinks was transmitted, which corresponds to the decoding function g.
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So, our aim is to choose a sensible codebook so that for a ‘typical’ transmission (y1, y2, . . . , yn)
there is a uniquely identifiable codeword (x1(i), x2(i), . . . , xn(i)) which is the likely input result-
ing in the output (y1, y2, . . . , yn).

Shannon’s ingenious idea was to choose a random codebook. That is, if we let Bn be the set
of all possible codebooks, where it is easy to see that

|Bn| = |X |n·Mn ,

since we get to choose the n ·Mn elements of the matrix, each of which is an element of X .

Our codebook will then be a random variable B(n), which is distributed on Bn. In other
words, B(n) is a random (Mn × n) matrix:

B(n) =


X1(1) X2(1) . . . Xn(1)
X1(2) X2(2) . . . Xn(2)

...
...

. . .
...

X1(M) X2(M) . . . Xn(M)


where each Xi(w) is a random variable taking values in X . In this way, given a fixed message
w ∈ W the input and output to the channel Cn are random variables

X(n)(w) = (X1(w), . . . , Xn(W )) and Y = (Y1, . . . , Yn)
(n).

In order to decode the transmission, we now need some way to identify which pairs (x,y) ∈
X n×Yn are likely to occur, or in other words, what are the ‘typical’ values taken by the random
vector (X(w),Y ).

Suppose we have a pair of jointly distributed random variables X,Y taking values in X and Y
respectively with joint distribution pX,Y and marginal distributions pX and pY . Given x ∈ X n

and y ∈ Yn we write

p
(n)
X,Y (x,y) =

n∏
k=1

pX,Y (xk, yk)

for the joint distribution of n i.i.d copies (X1, Y1) . . . , (Xn, Yn) of (X,Y ). Analogously we have
the (marginal) distributions of X1, . . . , Xn and Y1, . . . , Yn

p
(n)
X (x) =

n∏
k=1

pX(xk) and p
(n)
Y (y) =

n∏
k=1

pY (yk).

Since i.i.d sequences of random variables have the AEP, we know from Lemma 3.26 that

− 1

n
log2 p

(n)
X,Y (X1, . . . , Xn, Y1, . . . , Yn)→ H(X,Y ),

− 1

n
log2 p

(n)
X (X1, . . . , Xn)→ H(X), and

− 1

n
log2 p

(n)
Y (Y1, . . . , Yn)→ H(Y ), almost surely.

Let us define then, the set of ‘typical’ sequences in X n × Yn which match these predictions
up to some small deviation.
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Definition 5.18 (Jointly typical sequences). Given X,Y and (X1, Y1), . . . , (Xn, Yn) as above
and ε > 0, the set of jointly typical sequences is given by

Ã(n)
ε =

(x,y) ∈ X n × Yn :


∣∣∣− 1

n log2 p
(n)
X,Y (X1, . . . , Xn, Y1, . . . , Yn)−H(X,Y )

∣∣∣ < ε∣∣∣− 1
n log2 p

(n)
X (X1, . . . , Xn)−H(X)

∣∣∣ < ε∣∣∣− 1
n log2 p

(n)
Y (Y1, . . . , Yn)−H(Y )

∣∣∣ < ε


We will use the jointly typical sequences to decode. Indeed, suppose Bob has access to the

codebook x(n) and he also knows which sequences are jointly typical.

Bob receives some transmission y, and he knows that that is very likely that the input x is
such that (x,y) is jointly typical. So, Bob can look through the codebook and see whether the
pair (x(n)(k),y) is jointly typical.

If there is a unique such pair, then it is reasonable to guess that the input was x(n)(k), since
given any other input it’s very unlikely that the output was y.

Of course, even if the codebook is chosen very carefully, it may still be the case that there is
no codework such that (x(n)(k),y) is jointly typical, or there are multiple. In these cases, Bob
cannot make an unambiguous guess, and so he can just decode to the erasure symbol ⊥.

What we will find is that the properties of jointly typical sequences mean that, when Bob
makes a guess it is very accurate, and that if we choose our codebook at random, then as long
as the rate is not too large, it is in fact unlikely that Bob cannot make an unambiguous guess.

Proposition 5.19. Let X,Y ,(X1, Y1), . . . , (Xn, Yn), ε > 0 and Ã
(n)
ε be as above. Then there

exists N(ε) such that:

(a) For all n ≥ N(ε)

P
[
(X1, . . . , Xn, Y1, . . . , Yn) ∈ Ã(n)

ε

]
> 1− ε,

(b)

(1− ε)2n
(
H(X,Y )−ε

)
≤
∣∣∣Ã(n)

ε

∣∣∣ ≤ 2n
(
H(X,Y )+ε

)
,

where the first inequality holds for all n ≥ N(ε) and the second for all n.

(c) If (X ′
1, Y

′
1), . . . (X

′
n, Y

′
n) are i.i.d random variables where X ′

i and Y ′
i are independently

distributed as X and Y , then

(1− ε)2−n
(
I(X ; Y )+3ε

)
≤ P

[
(X ′

1, . . . , X
′
n, Y

′
1 , . . . , Y

′
n) ∈ Ã(n)

ε

]
≤ 2−n

(
I(X ; Y )−3ε

)
,

where the first inequality holds for all n ≥ N(ε) and the second for all n.

Proof.

It is now apparent why this encoding scheme should be effective. If we choose a message
w ∈ W, and transmit the (randomly chosen) codeword X(n)(w) across the channel, then it is
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very likely, by (a), that
(
X(n)(w),Y (n)

)
forms a typical pair, and so Bob will have at least one

candidate codeword.

However, whilst the output Y (n) of the channel may depend on the input X(n)(w), it
is independent of the other (randomly chosen) codewords. In particular, for any w′ ̸= w
the pair X(n)(w′) and Y (n) are independent, and so by (c) it is very unlikely that the pair(
X(n)(w′),Y (n)

)
forms a typical pair, and so the candidate codeword will likely be unique!

Proof that R∗ ≥ cap(C).

This is perhaps in some ways unsatisfactory, since whilst Theorem 5.16 asserts the existence
of a good sequence of (Mn, n)-codes, whose rate is tending to R and whose maximum error
probability can be made arbitrarily small, the proof is non-constructive.

Firstly, we used a probabilistic argument to deduce the existence of a sequence of codes whose
average error probability is small, and secondly one can check that in Lemma 5.17 we also used
a probabilistic argument to show that we can use a code whose average error probability is small
to cosntruct a code whose maximum error probability is small.

Indeed, in Theorem 5.16 we essentially used the following ‘trivial’ statement:

Claim. If a ∈ R, X is a real discrete random variable taking values in X , f : X → R and
E(f(X)) ≤ a, then there is some x ∈ X such that f(x) ≤ a.

Note that this follows from Lemma 1.18 (iv), by considering the random variable a− f(X).
This tells us that such an x exists, but gives us no algorithmic way to construct such an x.

Similarly in Lemma 5.17 we used the slightly more complicated claim:

Claim. If a,X,X , f are as above, then∑
x∈X

f(x)≤2a

pX(x) = P[f(X) ≤ 2a] ≥ 1

2
.

This is essentially immediate from Markov’s inequality (Lemma 1.22), since

P[f(X) ≥ 2a] ≤ E(f(X))

2a
≤ 1

2
.

However, again this does not lead to any particular algorithmic to identify {x ∈ X : f(x) ≤ 2a}.

One could of course run a brute-force search for appropriate (Mn, n)-codes, and there are
also ways to derandomize the argument to give a constructive algorithm to find these codes,
but neither are computationally efficient. Explicit constructions of such codes were a major
open problem for a long time, finally being settled in the 90s with the invention of turbo codes,
however we will not discuss these codes in any detail.
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5.2 Source-channel separation theorem

Suppose don’t want to transmit a single message, but the (partial) output of some stochastic
process (Vn)n∈N (which satisfies the AEP with rate h) across the mth extension of some channel
C = (X , P,Y), where we wish to minimise the rate m

n . Let us write V (n) = (V1, . . . , Vn).

Channel encoder
x(m)

Channel
Pm

Channel decoder
g

Message
Vn Xm Ym

Estimate
V̂n

As before, we transmit the message V (n) by first encoding it as some sequence Xm in Xm of
length m, transmitting it across the channel with ouput Y m, and then decoding the message to

some estimate V̂ (n).

If the capacity of the channel cap(Cm) = m · cap(C) is smaller than the entropy rate nh of
the process, then a similar argument as in Theorem 5.16 will tell us that we cannot transmit

V (n) with vanishing error probability p
(n)
err = P

[
V (n) ̸= V̂ (n)

]
, however we choose our channel

encoding and decoding.

Conversely, if m · cap(C) > nh, then one can combine Theorem 4.3 and Theorem 5.16 to
transmit the message with vanishing error probability by encoding the source and the channel
separately, which we refer to as source-channel separation

Source
encoder

C

Channel
encoder
x(m)

Channel
Pm

Channel
decoder

g1

Source
decoder

g2

Vn {0,1}nh Xm Ym {̂0,1}
nh

V̂n

That is, we choose first an encoding of the source C : Vn → {0, 1}nh which we can decode
with a vanishing probability of error (for ease of presentation here we have written nh, although
in practise we need to take n(h+ε) for some sufficiently small epsilon) which exists by Theorem
4.3. Since R = nh

m < cap(C) is an achievable rate, by Theorem 5.16 there is a channel encoding

x(m) : {0, 1}nh → Xm which can be transmitted across the channel and correctly decoded with
a vanishing probability of error. The total probability of error is then (at most) the sum of the
errors in the source and channel encoding, and so is also vanishing.

The following is an semi-formal statement of the above discussion.

Theorem 5.20 (Shannon source-channel separation theorem). Let (Vn)n∈N be a stochastic pro-
cess and V (n) = (V1, . . . , Vn) and let C = (X , P,Y) be a channel.

• If m·cap(C) < H
(
V (n)

)
, then V (n) cannot be transmitted across the mth extension channel

Cm with a vanishing probability error.
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• If (Vn)n∈N satisfies the AEP with rate h and m ·cap(C) > nh, then V (n) can be transmitted
across the mth extension channel Cm with a vanishing probability error, and the source
and channel coding can be done separately.

Remark 5.21. Note that, if (Vn)n∈N satisfies the AEP with rate h, then 1
nH

(
V (n)

)
→ h and

so the first and second part of the theorem are complementary.

6 Differential Entropy

6.1 Differential Entropy

Definition 6.1. Let X be a real, continuous random variable with density f(x) = fX(x), that
is, for any B ⊆ R

PX(B) := P[X ∈ B] =

∫
B
f(x) dx.

The differential entropy of X, respectively of the density function f , is defined as

h(X) = h(f) = −
∫
R
f(x) log2 f(x) dx = E(− log2 f(X)),

whenever the integral exists (in the sense of Lebesgue integration).

As with discrete entropy, we use the convention that 0 log2 0 := 0, and so we can think of
the integral as being taken over the set {x : f(x) > 0}. An immediate observation is, by the
translation invariance of the Lebesgue measure, for any a ∈ R

h(X − a) = h(X).

Example 6.2. (a) Continuous equidistribution on an interval [a, b]

In this case

fX =
1

b− a
1[a,b]

and so we can calculate

h(X) = −
∫ b

a

1

b− a
log2

1

b− a
dx = log2(b− a).

Already here we see some fundamental differences to the discrete entropy function. When
b− a = 1, the entropy is log2 1 = 0, and if b− a < 1 then the entropy is negative!

(b) Normal distribution N(µ, σ2)

By the comment above about translation invariance, we may assume that µ = 0, in which
case

f(x) =
1√
2πσ

exp

(
− x2

2σ2

)
and log2 f(x) = −

1

ln 2

(
x2

2σ2
+ ln

(√
2πσ

))
,
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and we can calculate

h(X) =
1

ln 2

∫
R
f(x)

(
x2

2σ2
+ ln

(√
2πσ

))
dx

=
1

ln 2

(∫
R
f(x)

x2

2σ2
dx+

∫
R
ln
(√

2πσ
)
f(x) dx

)
=

1

ln 2

(
σ2

2σ2
+ ln

(√
2πσ

))
=

1

ln 2

(
1

2
+ ln

(√
2πσ

))
=

1

2
log2(2πeσ

2).

Lemma 6.3. Let X be a real, continuous random variable and let a ∈ R be non-zero. Then

h(aX) = h(X) + log |a|.

Proof.

6.2 Discretization

Let us ‘compare’ in a way the differential entropy to the discrete entropy by way of discretization.

Suppose we have a random variable X on R which has a ‘well-behaved’ density function, say
which is continuious on some open (bounded or unbounded) interval and is zero outside of the
closure of that interval. In this case we can subdivide this interval into finitely or countably
many disjoint intervals Ik, each of length δ > 0.

Now, by the Mean Value Theorem for integrals, there is some xk = xk(δ) ∈ I◦k (the interior
of the interval) such that ∫

Ik

f(x) dx = δf(xk).

We can then define a discrete approximation to X, which we denote by Xδ defined as

Xδ(ω) = xk, if X(ω) ∈ Ik.

Xδ is then a discrete random variable, where for each k P[Xδ = xk] = P[X ∈ Ik] = δf(xk).

We can calculate then the discrete entropy of the random variable Xδ.

H(Xδ) =
∑
k

−δf(xk) log2(δf(xk))

=
∑
k

−δf(xk) log2 δ − δf(xk) log2 f(xk))

= − log2 δ −
∑
k

δf(xk) log2 f(xk)).
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However, the latter sum is a Riemann sum for the integral
∫
R f(x) log2 f(x), and so as δ → 0

H(Xδ) ≈ − log2 δ + h(X),

where we have glossed over some technical details of convergence if the interval is unbounded.

In particular, taking δ = 1
n we see that

H(X 1
n
) ≈ log2 n+ h(X).

So, it is not the case that the differential entropy is merely the limit of the discrete entropy of
a sequence of sufficiently fine discrete approximatiomns to our random variable, the entropy of
these approximations will grow unboudnedly. However, we can recover an approximation to the
differential entropy

h(X) ≈ H(Xδ) + log2 δ,

by taking into account the approximation parameter δ.

6.3 Joint and conditional differential entropy

More generally, if we have a collection of jointly distributed random variables X1, . . . , Xn we
can think of them as a random vector X = (X1, . . . , Xn)

T distributed on Rn.

We have then a corresponding density function1 fX : Rn → R with respect to the Lebesgue
measure.

Definition 6.4. Given a random vector X = (X1, . . . , Xn)
T with joint density function fX , the

joint differential entropy is defined as

h(X) = h(fX) := −
∫
Rn

f(x) log2 f(x) dx where x = (x1, . . . , xn)
T ,

when the integral exists in the sense of Lebesgue integration. As before, it is easy to see that
the differential entropy is translation invariant.

Given two random vectors X and Y , with a joint density function fX,Y and a conditional
density function fX|Y we have in general2

fX|Y (x | y) =
fX,Y (x,y)

fY (y)

and we can define
h(X | Y = y) := h(fX|Y (· | y))

and then the conditional differential entropy as

h(X | Y ) := −
∫
Rn

h(X | Y = y)fY (y) dy,

where fY (y) =
∫
Rm

fX,Y (x,y) dx, as always if the integral exists.

1Note that in general, even if X1, . . . , Xn have density functions, it may be that X does not.
2Glossing over some technicalities.

62



It is relatively easy to verify that, if all the involved integrals are finite, then

h(X | Y ) = −
∫
Rm×Rn

fX,Y (x,y) log2 fX|Y (x | y) dx dy = h(X,Y )− h(Y ).

The following lemma then follows inductively from the definitions as in the proof of Theorem
2.13.

Lemma 6.5 (Chain rule for differential entropy). Given a continuous random vector X =
(X1, . . . , Xn)

t

h(X) =

n∑
i=1

h(Xi | X1, X2, . . . , Xi−1).

We also have the following multidimensional version of Lemma 6.3 for how the entropy of a
random vector scales under invertible linear transformations.

Lemma 6.6. Let X = (X1, . . . , Xn) be a real, continuous random vector and let A be a non-
singular (n× n)-matrix and b ∈ Rn. Then

h(AX + b) = h(X) + log2 | detA|.

Proof.

Example 6.7. The general n-dimensional normal distribution is determined by two parameters
uT ∈ Rn and a positive definite (n× n)-matrix Σ and has density function

f(x) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)Tσ−1(x− u)

)
.

It can be calculated that N(u,Σ) = (X1, . . . , Xn)
T is such that

E(X) = uT and Σ = (Cov(Xi, Xj))i∈[n],j∈[n] .

This distribution can also be obtained as follows: We start with a vector Y = (Y1, . . . , Yn)
T

of i.i.d standard normal random variables, a non-singular (n × n)-matrix A and some vector
µ = (µ1, . . . , µn)

T . If we let

X = (X1, . . . , Xn)
T = AT + µ,

then we can compute
E(X) = (E(X1), . . . ,E(Xn))

T = µ

and the covariance matrix is given by

Σ = (Cov(Xi, Xj))i∈[n],j∈[n] = AAT .

Finally, a computation will show that the density of X is given by

fX(x) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)Tσ−1(x− u)

)
,

and so X ∼ N(u,Σ).
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Hence, it follows from Lemma 6.6 that

h(N(u,Σ)) = h(Y1, . . . , Yn) + log2 |detA|.

Now, since Σ = AAT , it follows that |detA| =
√
| detΣ|, and we will show shortly that for

independent random variables h(Y1, . . . , Yn) =
∑n

i=1 h(Yi) and hence

h(N(u,Σ)) =
n

2
log2(2πe) +

1

2
log2 | detΣ| =

1

2
log2 ((2πe)

n|detΣ|) .

Definition 6.8. Given two density functions f and g on Rn we can define the Kullback-Leibler
Divergence as

D(f ∥ g) :=
∫
Rn

f(x) log2

(
f(x)

g(x)
dx

)
under usual conventions about the value of a log2 b when a or b equal 0.

It can be checked that if Pf and Pg are the associated probability measures, then D(( ∥ f), g)
will be finite only if g > 0 holds Pf almost everywhere.

Theorem 6.9. [Information Inequality] Let f and g be density functions on Rn, then

D(f ∥ g) ≥ 0

with equality if and only if f = g almost everywhere.

Proof.

Definition 6.10. Given two random vectors X and Y , with a joint density function fX,Y we
define

I(X ; Y ) = D(fX,Y ∥ fX ⊗ fY ).

One can argue in precisely the same way as in the discrete case that the following holds
(whenevr all the relevant integrals are finite).

Lemma 6.11. 1. I(X ; Y ) = h(X)−h(X | Y ) = h(Y )−h(Y | X) == h(X)+h(Y )−h(X,Y );

2. I(X ; Y ) ≥ 0 with equality if and only if X and Y are independent;

3. h(X,Y ) ≤ h(X) + h(Y ) with equality if and only if X and Y are independent.

Remark 6.12. Whilst we can only define the differential entropy for random variables with
‘well-behaved’ density functions, using our discretisation process we can define a sensible notion
of mutual information for arbitrary continuous, real random vectors.

Indeed, considering just the one dimensional case, given jointly distributed random variables
X and Y we could consider the discrete approximations Xδ and Yδ. Then, one can similarly
show that

I(Xδ ; Yδ) = H(Xδ)−H(Xδ | Yδ) ≈ h(X)− log2 δ − (h(X | Y )− log2 δ) = I(X ; Y ).

In the general case, one can show that the mutual information of X and Y can be obtained
as the limit of the mutual information of a sequence of finer and finer discrete approximations
to the pair (X,Y ).
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Theorem 6.13. Let X = (X1, . . . , Xn)
T be a continuous real random vector with E(X) = 0

and with a positive definite covariance matrix Σ = (Cov(Xi, Xj))i∈[n],j∈[n]. Then

h(X) ≤ h (N(0,Σ)) ,

with equality if and only if X ∼ N(0,Σ).

Proof.

6.4 The Gaussian Channel

This is a simple channel where the input is some continuous, real random variable X. During
transmission some Gaussian random noise Z with distribution N(0, σ2) is added to the signal,
and this noise is additive, so that the ouput Y is given by X + Z.

Noise
Z

Input
X

Output
Y = X + Z

As with discrete channels, we can consider the nth channel extension, where the input consists
of a sequence X1, . . . , Xn of independent random variables (which we will consider to be i.i.d
copies of some fixed X) and there is an independent sequence of i.i.d copies Z1, . . . , Zn of the
Gaussian noise Z, and the output is then a sequence Y1, . . . , Yk of i.i.d random variables where
Yi = Xi + Zi for each i ∈ [k].

A typical assumption on the input distributionX is that E(X2) ≤ τ2 for some pre-determined
constant τ > 0.

Definition 6.14. The capacity of the Gaussian channel with parameters σ2 and τ2 is defined
as

cap
(
σ2, τ2

)
= max

{
I(X;Y ) :

X a continuous, real random variable with E(X2) ≤ τ2 and
Y = X + Z where Z ∼ N(0, σ2) independent of X

}
.

Theorem 6.15. For any σ2, τ2 > 0

cap
(
σ2, τ2

)
=

1

2
log2

(
1 +

τ2

σ2

)
and the maximum is achieved when X ∼ N(0, τ2).
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