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Problem 12. Using the General Lovász Local Lemma (Theorem 4.7), deduce the
Symmetric Lovász Local Lemma (Theorem 4.8).

Problem 13. We say that a hypergraph H = (V,E) is 2-colourable if there exists
a colouring of V by two colours so that no edge in E is monochromatic.

(a) Let H be a hypergraph in which every edge has at least k vertices and each
edge of H intersects at most d ≥ 1 other edges. If e(d+1)21−k ≤ 1, show that
H is 2-colourable.

(b) Suppose that H is k-uniform (every edge has size k) and k-regular (each vertex
lies in k edges). If k ≥ 9, show that H is 2-colourable.

Problem 14. Let G = (V,E) be a bipartite graph with n vertices, and suppose
that for each vertex we are given some list S(v) of colours such that for some d

� |S(v)| ≥ 10d for each v;

� for each v ∈ V and c ∈ S(v) there are at most d neighbours, u, of v with
c ∈ S(u).

Show that we can find a proper colouring of G such that the colour of each vertex
v is in S(v).

Problem 15. Let D be a directed graph with minimum outdegree δ and maximum
indegree ∆. Show that for any k ∈ N with

k ≤ δ

1 + log(1 + δ∆)
,

D contained a directed cycle of length divisible by k.

(Hint : Take a random partition of the vertices into k sets V1, . . . , Vk and consider
the event that a vertex v ∈ Vi has no outneighbour in Vi+1.)


